Structure and development of the lower crust and upper mantle of Southwestern Japan: Evidence from petrology of deep-seated xenoliths

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and metasediments; (ii) garnet gabbro (Group III) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group II); and (iv) spinel peridotite and pyroxenite (Group I). Groups II and III show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups II and III are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, 'and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.

Original languageEnglish
Pages (from-to)404-420
Number of pages17
JournalIsland Arc
Volume6
Issue number4
DOIs
Publication statusPublished - 1997

Fingerprint

petrology
lower crust
corundum
upper mantle
alkali basalt
metasediment
spinel
magmatism
pyroxenite
underplating
anorthosite
magma
kyanite
P-T conditions
mineral
crust
gabbro
serum
plagioclase
garnet

Keywords

  • Japan
  • Lower crust
  • Petrology
  • Upper mantle
  • Xenolith

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)

Cite this

@article{413acb1216904e35ad48e7349f155bfe,
title = "Structure and development of the lower crust and upper mantle of Southwestern Japan: Evidence from petrology of deep-seated xenoliths",
abstract = "Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and metasediments; (ii) garnet gabbro (Group III) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group II); and (iv) spinel peridotite and pyroxenite (Group I). Groups II and III show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups II and III are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, 'and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.",
keywords = "Japan, Lower crust, Petrology, Upper mantle, Xenolith",
author = "Toshio Nozaka",
year = "1997",
doi = "10.1111/j.1440-1738.1997.tb00050.x",
language = "English",
volume = "6",
pages = "404--420",
journal = "Island Arc",
issn = "1038-4871",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Structure and development of the lower crust and upper mantle of Southwestern Japan

T2 - Evidence from petrology of deep-seated xenoliths

AU - Nozaka, Toshio

PY - 1997

Y1 - 1997

N2 - Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and metasediments; (ii) garnet gabbro (Group III) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group II); and (iv) spinel peridotite and pyroxenite (Group I). Groups II and III show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups II and III are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, 'and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.

AB - Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and metasediments; (ii) garnet gabbro (Group III) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group II); and (iv) spinel peridotite and pyroxenite (Group I). Groups II and III show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups II and III are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, 'and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.

KW - Japan

KW - Lower crust

KW - Petrology

KW - Upper mantle

KW - Xenolith

UR - http://www.scopus.com/inward/record.url?scp=0031448284&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031448284&partnerID=8YFLogxK

U2 - 10.1111/j.1440-1738.1997.tb00050.x

DO - 10.1111/j.1440-1738.1997.tb00050.x

M3 - Article

AN - SCOPUS:0031448284

VL - 6

SP - 404

EP - 420

JO - Island Arc

JF - Island Arc

SN - 1038-4871

IS - 4

ER -