String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator

Takayuki Matsuno, Tomoya Shirakawa, Tomotoshi Watanabe, Mamoru Minami

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recently, the demand to manipulate deformable objects such as a string and cloth by robots is growing. The reason is that it has the possibility of making our lives more convenient in many domains. The manipulation of deformable objects, however, is more difficult than that of rigid objects, because deformable objects have diversity of shape and behavior. Therefore, our research group has been focusing on the string shape operation. This paper describes planning method of string untying operation based on knot theory and algorithms to generate the motion of a manipulator. The novel contribution of our planning method is automatic selection of optimal shape operation based on cost function. At final, the results of string untying experiments are reported.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages180-186
Number of pages7
ISBN (Electronic)9781538630815
DOIs
Publication statusPublished - Sep 10 2018
Event2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia
Duration: May 21 2018May 25 2018

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2018 IEEE International Conference on Robotics and Automation, ICRA 2018
CountryAustralia
CityBrisbane
Period5/21/185/25/18

Fingerprint

Manipulators
Planning
Cost functions
Robots
Experiments

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Cite this

Matsuno, T., Shirakawa, T., Watanabe, T., & Minami, M. (2018). String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator. In 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 (pp. 180-186). [8460477] (Proceedings - IEEE International Conference on Robotics and Automation). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICRA.2018.8460477

String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator. / Matsuno, Takayuki; Shirakawa, Tomoya; Watanabe, Tomotoshi; Minami, Mamoru.

2018 IEEE International Conference on Robotics and Automation, ICRA 2018. Institute of Electrical and Electronics Engineers Inc., 2018. p. 180-186 8460477 (Proceedings - IEEE International Conference on Robotics and Automation).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Matsuno, T, Shirakawa, T, Watanabe, T & Minami, M 2018, String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator. in 2018 IEEE International Conference on Robotics and Automation, ICRA 2018., 8460477, Proceedings - IEEE International Conference on Robotics and Automation, Institute of Electrical and Electronics Engineers Inc., pp. 180-186, 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, 5/21/18. https://doi.org/10.1109/ICRA.2018.8460477
Matsuno T, Shirakawa T, Watanabe T, Minami M. String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator. In 2018 IEEE International Conference on Robotics and Automation, ICRA 2018. Institute of Electrical and Electronics Engineers Inc. 2018. p. 180-186. 8460477. (Proceedings - IEEE International Conference on Robotics and Automation). https://doi.org/10.1109/ICRA.2018.8460477
Matsuno, Takayuki ; Shirakawa, Tomoya ; Watanabe, Tomotoshi ; Minami, Mamoru. / String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator. 2018 IEEE International Conference on Robotics and Automation, ICRA 2018. Institute of Electrical and Electronics Engineers Inc., 2018. pp. 180-186 (Proceedings - IEEE International Conference on Robotics and Automation).
@inproceedings{65921adb569d408aaf754e380d2bb774,
title = "String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator",
abstract = "Recently, the demand to manipulate deformable objects such as a string and cloth by robots is growing. The reason is that it has the possibility of making our lives more convenient in many domains. The manipulation of deformable objects, however, is more difficult than that of rigid objects, because deformable objects have diversity of shape and behavior. Therefore, our research group has been focusing on the string shape operation. This paper describes planning method of string untying operation based on knot theory and algorithms to generate the motion of a manipulator. The novel contribution of our planning method is automatic selection of optimal shape operation based on cost function. At final, the results of string untying experiments are reported.",
author = "Takayuki Matsuno and Tomoya Shirakawa and Tomotoshi Watanabe and Mamoru Minami",
year = "2018",
month = "9",
day = "10",
doi = "10.1109/ICRA.2018.8460477",
language = "English",
series = "Proceedings - IEEE International Conference on Robotics and Automation",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "180--186",
booktitle = "2018 IEEE International Conference on Robotics and Automation, ICRA 2018",

}

TY - GEN

T1 - String Untying Planning Based on Knot Theory and Proposal of Algorithms to Generate the Motion of a Manipulator

AU - Matsuno, Takayuki

AU - Shirakawa, Tomoya

AU - Watanabe, Tomotoshi

AU - Minami, Mamoru

PY - 2018/9/10

Y1 - 2018/9/10

N2 - Recently, the demand to manipulate deformable objects such as a string and cloth by robots is growing. The reason is that it has the possibility of making our lives more convenient in many domains. The manipulation of deformable objects, however, is more difficult than that of rigid objects, because deformable objects have diversity of shape and behavior. Therefore, our research group has been focusing on the string shape operation. This paper describes planning method of string untying operation based on knot theory and algorithms to generate the motion of a manipulator. The novel contribution of our planning method is automatic selection of optimal shape operation based on cost function. At final, the results of string untying experiments are reported.

AB - Recently, the demand to manipulate deformable objects such as a string and cloth by robots is growing. The reason is that it has the possibility of making our lives more convenient in many domains. The manipulation of deformable objects, however, is more difficult than that of rigid objects, because deformable objects have diversity of shape and behavior. Therefore, our research group has been focusing on the string shape operation. This paper describes planning method of string untying operation based on knot theory and algorithms to generate the motion of a manipulator. The novel contribution of our planning method is automatic selection of optimal shape operation based on cost function. At final, the results of string untying experiments are reported.

UR - http://www.scopus.com/inward/record.url?scp=85063164140&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063164140&partnerID=8YFLogxK

U2 - 10.1109/ICRA.2018.8460477

DO - 10.1109/ICRA.2018.8460477

M3 - Conference contribution

AN - SCOPUS:85063164140

T3 - Proceedings - IEEE International Conference on Robotics and Automation

SP - 180

EP - 186

BT - 2018 IEEE International Conference on Robotics and Automation, ICRA 2018

PB - Institute of Electrical and Electronics Engineers Inc.

ER -