Strategy dynamics particle swarm optimizer

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This paper proposes a particle swarm optimization with strategy dynamics (SDPSO) to solve single-objective optimization problems. SDPSO consists of four PSO search strategies. Evolutionary game theory is introduced to control the population state. In evolutionary game theory, through the interaction between players, better strategies will eventually dominate among the players. By extending this idea to PSO, a selection mechanism and a mutation mechanism are proposed. By using the selection mechanism, the adoption probability of the high payoff strategies will increase. The mutation mechanism can examine the stability of the incumbent strategy to evolutionary pressures. The performance of SDPSO is compared with 14 algorithms on the CEC 2014 test suite. The results show that SDPSO has the highest rank. SDPSO is applied to solve a real-world problem. SDPSO can find the best mean results comparing with 4 algorithms. The findings show that the proposed evolutionary game theory-based framework can adaptively control the population state. This study proposes a new application of evolutionary game theory to the design of swarm intelligence and contributes to a better understanding of the usefulness of the evolutionary game theory in the optimization method. The source codes of SDPSO are available at https://github.com/zi-ang-liu/SDPSO.

Original languageEnglish
Pages (from-to)665-703
Number of pages39
JournalInformation Sciences
Volume582
DOIs
Publication statusPublished - Jan 2022

Keywords

  • Ensemble approach
  • Evolutionarily stable strategy
  • Evolutionary game theory
  • Particle swarm optimization
  • Replicator dynamics

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Strategy dynamics particle swarm optimizer'. Together they form a unique fingerprint.

Cite this