Abstract
This paper studies the solution of the steady-state error covariance equation (which is represented by the algebraic Lyapunov equation) associated with a forward-pass fixed-interval smoother for discrete-time linear systems. A necessary and sufficient condition is given to assure the existence of a unique stabilizing solution. A simple algorithm for solving such an equation is also proposed by using four eigenvector matrices, which are generated by a symplectic matrix, corresponding to the algebraic Riccati equation of a backward-pass information filter. Thus the results have application to the important problem of the limiting covariance analysis of smoothing prior to practically dealing with a finite interval of data.
Original language | English |
---|---|
Pages (from-to) | 136-140 |
Number of pages | 5 |
Journal | Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME |
Volume | 108 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 1986 |
Externally published | Yes |
ASJC Scopus subject areas
- Control and Systems Engineering
- Information Systems
- Instrumentation
- Mechanical Engineering
- Computer Science Applications