Statistical analysis of correlation of gamma passing results for two quality assurance phantoms used for patient-specific quality assurance in volumetric modulated arc radiotherapy

Yuki Kunii, Yoshinori Tanabe, Akira Nakamoto, Kunio Nishioka

Research output: Contribution to journalArticlepeer-review

Abstract

Patient-specific quality assurance (QA) data must be migrated from outdated QA systems to new ones to produce objective results that can be understood by oncologists. We aimed to evaluate a method for obtaining a high correlation of dose distributions according to various gamma passing rates among two types of 2D detectors for the migration of patient-specific QA data of volumetric modulated arc therapy (VMAT). The patient-specific QA of 20 patients undergoing VMAT was measured in two different modes: standard single measurement (SM) mode and multiple merged measurements (MM) techniques using ArcCHECK (AC) and OCTAVIUS (OT). The correlation of the measured and calculated dose distributions was evaluated according to varying gamma passing rates (3%/3 mm, 2%/3 mm, 2%/2 mm, and 1%/1 mm). The gamma passing rates were analyzed using the Anderson–Darling normality test. Treatment plan dose distributions were calculated by intentionally shifting the calculation isocenter position (x,y,z ± 0.5, ± 1.0, ± 1.5, and ± 2.0 mm). The highest correlation between the SM and MM was observed with a gamma passing rate of 1%/1 mm with AC (r = 0.866) and 3%/2 mm with OT (r = 0.916). However, SM and MM did not follow a normal distribution with a rate of 3%/2 mm in OT. The second-highest correlation was obtained with a rate of 2%/2 mm (r = 0.900). Among the two 2D detectors, the highest correlation between the calculated and measured dose distributions was obtained for a gamma passing rate of 1%/1 mm using SM in AC and 2%/2 mm using MM in OT (r = 0.716). Adjusting the gamma passing rate and measurement mode of AC and OT resulted in higher correlations between measured and calculated dose distributions. The high correlation between different 2D detectors objectively indicated a potential migration method. This enabled the sharing of more accurate patient-specific QA data from 2D detectors with different phantoms. A high correlation was observed between the two types of detectors in this study (r = 0.716); therefore, the proposed method should be useful for oncologists to share information regarding patient-specific QA for VMAT.

Original languageEnglish
JournalMedical Dosimetry
DOIs
Publication statusAccepted/In press - 2022
Externally publishedYes

Keywords

  • 2D detector
  • Gamma passing rate
  • Patient-specific quality assurance (QA)
  • Volumetric modulated arc therapy (VMAT)

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Oncology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Statistical analysis of correlation of gamma passing results for two quality assurance phantoms used for patient-specific quality assurance in volumetric modulated arc radiotherapy'. Together they form a unique fingerprint.

Cite this