Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity

Hiroshi Isobe, Mitsuo Shoji, Takayoshi Suzuki, Jian-Ren Shen, Kizashi Yamaguchi

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Photosynthetic water oxidation is catalyzed by a Mn 4 CaO 5 -cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S 3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state (S total = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long Mn A ···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.

Original languageEnglish
JournalJournal of Chemical Theory and Computation
DOIs
Publication statusPublished - Jan 1 2019

Fingerprint

Photosystem II Protein Complex
Metals
Ligands
Oxygen
valence
Jahn-Teller effect
Oxidation
oxygen
Discrete Fourier transforms
Ground state
Paramagnetic resonance
Topology
Spectroscopy
Geometry
Water
ligands
oxidation
alternations
metals
seats

ASJC Scopus subject areas

  • Computer Science Applications
  • Physical and Theoretical Chemistry

Cite this

@article{412ec9ec34a9418a8a3e86bf2e28b3db,
title = "Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity",
abstract = "Photosynthetic water oxidation is catalyzed by a Mn 4 CaO 5 -cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S 3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state (S total = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 {\AA}) and long Mn A ···O5 distances (>2.0 {\AA}). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique {"}distorted chair{"} topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.",
author = "Hiroshi Isobe and Mitsuo Shoji and Takayoshi Suzuki and Jian-Ren Shen and Kizashi Yamaguchi",
year = "2019",
month = "1",
day = "1",
doi = "10.1021/acs.jctc.8b01055",
language = "English",
journal = "Journal of Chemical Theory and Computation",
issn = "1549-9618",
publisher = "American Chemical Society",

}

TY - JOUR

T1 - Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity

AU - Isobe, Hiroshi

AU - Shoji, Mitsuo

AU - Suzuki, Takayoshi

AU - Shen, Jian-Ren

AU - Yamaguchi, Kizashi

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Photosynthetic water oxidation is catalyzed by a Mn 4 CaO 5 -cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S 3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state (S total = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long Mn A ···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.

AB - Photosynthetic water oxidation is catalyzed by a Mn 4 CaO 5 -cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S 3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state (S total = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long Mn A ···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.

UR - http://www.scopus.com/inward/record.url?scp=85063159318&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063159318&partnerID=8YFLogxK

U2 - 10.1021/acs.jctc.8b01055

DO - 10.1021/acs.jctc.8b01055

M3 - Article

C2 - 30855953

AN - SCOPUS:85063159318

JO - Journal of Chemical Theory and Computation

JF - Journal of Chemical Theory and Computation

SN - 1549-9618

ER -