TY - JOUR
T1 - Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins
AU - Matsumoto, Ken
AU - Nagata, Kyosuke
AU - Miyaji-Yamaguchi, Mary
AU - Kikuchi, Akihiko
AU - Tsujimoto, Masafumi
PY - 1999/10
Y1 - 1999/10
N2 - Template activating factor I (TAF-I) was originally identified as a host factor required for DNA replication and transcription of adenovirus genome complexed with viral basic proteins. Purified TAF-I was shown to bind to core histories and stimulate transcription from nucleosomal templates. Human TAF-I consists of two acidic proteins, TAF-Iα and TAF-Iβ, which differ from each other only in their amino-terminal regions. Here, we report that TAF-I decondenses demembraned Xenopus sperm chromatin. Human TAF-Iβ has a chromatin decondensation activity comparable to that of NAP-I, another histone binding protein, whereas TAF-Iα has only a weak activity. Analysis of molecular mechanisms underlying the chromatin decondensation by TAF-I revealed that TAF-I interacts directly with sperm basic proteins. Deletion of the TAF-I carboxyl-terminal acidic region abolishes the decondensation activity. Interestingly, the acidic region itself is not sufficient for decondensation, since an amino acid substitution mutant in the dimerization domain of TAF-I which has the intact acidic region does not support chromatin decondensation. We detected the β form of TAF-I in Xenopus oocytes and eggs by immunoblotting, and the cloning of its cDNA led us to conclude that Xenopus TAF-Iβ also decondenses sperm chromatin. These results suggest that TAF-I plays a role in remodeling higher-order chromatin structure as well as nucleosomal structure through direct interaction with chromatin basic proteins.
AB - Template activating factor I (TAF-I) was originally identified as a host factor required for DNA replication and transcription of adenovirus genome complexed with viral basic proteins. Purified TAF-I was shown to bind to core histories and stimulate transcription from nucleosomal templates. Human TAF-I consists of two acidic proteins, TAF-Iα and TAF-Iβ, which differ from each other only in their amino-terminal regions. Here, we report that TAF-I decondenses demembraned Xenopus sperm chromatin. Human TAF-Iβ has a chromatin decondensation activity comparable to that of NAP-I, another histone binding protein, whereas TAF-Iα has only a weak activity. Analysis of molecular mechanisms underlying the chromatin decondensation by TAF-I revealed that TAF-I interacts directly with sperm basic proteins. Deletion of the TAF-I carboxyl-terminal acidic region abolishes the decondensation activity. Interestingly, the acidic region itself is not sufficient for decondensation, since an amino acid substitution mutant in the dimerization domain of TAF-I which has the intact acidic region does not support chromatin decondensation. We detected the β form of TAF-I in Xenopus oocytes and eggs by immunoblotting, and the cloning of its cDNA led us to conclude that Xenopus TAF-Iβ also decondenses sperm chromatin. These results suggest that TAF-I plays a role in remodeling higher-order chromatin structure as well as nucleosomal structure through direct interaction with chromatin basic proteins.
UR - http://www.scopus.com/inward/record.url?scp=0032827034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032827034&partnerID=8YFLogxK
U2 - 10.1128/MCB.19.10.6940
DO - 10.1128/MCB.19.10.6940
M3 - Article
C2 - 10490631
AN - SCOPUS:0032827034
SN - 0270-7306
VL - 19
SP - 6940
EP - 6952
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 10
ER -