Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

We have prepared VO2 thin films epitaxially grown on TiO 2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O2 solid solution. These results indicate that insulating (V,Ti)O2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti)O2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti)O2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of pure VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations.

Original languageEnglish
Article number043702
JournalJournal of Applied Physics
Volume109
Issue number4
DOIs
Publication statusPublished - Feb 15 2011

Fingerprint

solid solutions
thin films
insulators
thick films
photoelectric emission
electrical resistivity
synchrotrons
film thickness
electronics
ions
metals
spectroscopy
pulsed laser deposition
physical properties
transport properties
transition temperature
valence
cooling
temperature

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

@article{c3247f354d24485a93623fa278d0a123,
title = "Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates",
abstract = "We have prepared VO2 thin films epitaxially grown on TiO 2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O2 solid solution. These results indicate that insulating (V,Ti)O2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti)O2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti)O2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of pure VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations.",
author = "Yuji Muraoka and K. Saeki and Ritsuko Eguchi and Takanori Wakita and M. Hirai and Takayoshi Yokoya and S. Shin",
year = "2011",
month = "2",
day = "15",
doi = "10.1063/1.3549835",
language = "English",
volume = "109",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "4",

}

TY - JOUR

T1 - Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates

AU - Muraoka, Yuji

AU - Saeki, K.

AU - Eguchi, Ritsuko

AU - Wakita, Takanori

AU - Hirai, M.

AU - Yokoya, Takayoshi

AU - Shin, S.

PY - 2011/2/15

Y1 - 2011/2/15

N2 - We have prepared VO2 thin films epitaxially grown on TiO 2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O2 solid solution. These results indicate that insulating (V,Ti)O2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti)O2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti)O2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of pure VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations.

AB - We have prepared VO2 thin films epitaxially grown on TiO 2(001) substrates with thickness systematically varied from 2.5 to 13 nm using a pulsed laser deposition method, and studied the transport property and electronic states of the films by means of resistivity and in situ synchrotron photoemission spectroscopy (SRPES). In resistivity measurements, the 13-nm-thick film exhibits a metal-insulator transition at around 290 K on cooling with change of three orders of magnitudes in resistivity. As the film thickness decreases, the metal-insulator transition broadens and the transition temperature increases. Below 4 nm, the films do not show the transition and become insulators. In situ SRPES measurements of near the Fermi level valence band find that the electronic state of the 2.5-nm-thick film is different than that of the temperature-induced insulator phase of VO2 itself although these two states are insulating. Ti 2p core-level photoemission measurements reveal that Ti ions exist near the interface between the films and TiO2 substrates, with a chemical state similar to that in (V,Ti)O2 solid solution. These results indicate that insulating (V,Ti)O2 solid solution is formed in the thinner films. We propose a simple growth model of a VO2 thin film on a TiO2(001) substrate. Near the interface, insulating (V,Ti)O2 solid solution is formed due to the diffusion of Ti ions from the TiO2 substrate into the VO2 film. The concentration of Ti in (V,Ti)O2 is relatively high near the interface and decreases toward the surface of the film. Beyond a certain film thickness (about 7 nm in the case of the present 13-nm-thick film), the VO2 thin film without any Ti ions starts to grow. Our work suggests that developing a technique for preparing the sharp interface between the VO2 thin films and TiO2 substrates is a key issue to study the physical property of an ultrathin film of pure VO2, especially to examine the presence of the novel electronic state called a semi-Dirac point phase predicted by calculations.

UR - http://www.scopus.com/inward/record.url?scp=79952121276&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952121276&partnerID=8YFLogxK

U2 - 10.1063/1.3549835

DO - 10.1063/1.3549835

M3 - Article

AN - SCOPUS:79952121276

VL - 109

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 4

M1 - 043702

ER -