Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis

Research output: Contribution to journalArticle

Abstract

Plant pathogenic bacteria cause huge yield losses in crops globally. Therefore, finding effective bactericides to these pathogens is an immediate challenge. In this study, we sought compounds that specifically inhibit the growth of Ralstonia solanacearum. As a result, we identified one promising compound, 1-(4-bromophenyl)-6-methoxy-2,3,4,9-tetrahydro-1H-β-carboline, which inhibited the growth of R. solanacearum (Rs1002) from a pilot library of 376 chemicals provided from RIKEN. We further obtained its structural analogues and assessed their ability to inhibit Rs1002 growth. Then we identified five compounds, named ralhibitins A to E, that specifically inhibit growth of Rs1002 at >5 μg/ml final concentration. The most effective compounds, ralhibitins A, C, and E completely inhibited the growth of Rs1002 at 1.25 μg/ml. In addition, ralhibitins A to E inhibited growth of Xanthomonas oryzae pv. oryzae but not the other bacteria tested at a final concentration of 10 μg/ml. Whereas, ralhibitin E, besides inhibiting R. solanacearum and X. oryzae pv. oryzae, completely inhibited the growth of X. campestris pv. campestris and the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis at 10 μg/ml. Growth inhibition by these compounds was stable at pH 6–9 and after autoclaving. Because Rs1002 grew in the culture medium in which ralhibitins were incubated with the ralhibitin-insensitive bacteria, the unaffected bacteria may be able to inactivate the inhibitory effect of ralhibitins. These results suggest that ralhibitins might be potential lead compounds for the specific control of phytopathogenic bacteria.

Original languageEnglish
Pages (from-to)29-35
Number of pages7
JournalMicrobiological Research
Volume215
DOIs
Publication statusPublished - Oct 1 2018

Fingerprint

Ralstonia solanacearum
Xanthomonas
Growth Inhibitors
Growth
Bacteria
Small Molecule Libraries
Carbolines
Oryza
Gram-Positive Bacteria
Culture Media

Keywords

  • Bactericide
  • Lead compounds
  • Ralhibitins
  • Ralstonia solanacearum

ASJC Scopus subject areas

  • Microbiology

Cite this

@article{c5655e40c75340c1a157d2eb70c27843,
title = "Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis",
abstract = "Plant pathogenic bacteria cause huge yield losses in crops globally. Therefore, finding effective bactericides to these pathogens is an immediate challenge. In this study, we sought compounds that specifically inhibit the growth of Ralstonia solanacearum. As a result, we identified one promising compound, 1-(4-bromophenyl)-6-methoxy-2,3,4,9-tetrahydro-1H-β-carboline, which inhibited the growth of R. solanacearum (Rs1002) from a pilot library of 376 chemicals provided from RIKEN. We further obtained its structural analogues and assessed their ability to inhibit Rs1002 growth. Then we identified five compounds, named ralhibitins A to E, that specifically inhibit growth of Rs1002 at >5 μg/ml final concentration. The most effective compounds, ralhibitins A, C, and E completely inhibited the growth of Rs1002 at 1.25 μg/ml. In addition, ralhibitins A to E inhibited growth of Xanthomonas oryzae pv. oryzae but not the other bacteria tested at a final concentration of 10 μg/ml. Whereas, ralhibitin E, besides inhibiting R. solanacearum and X. oryzae pv. oryzae, completely inhibited the growth of X. campestris pv. campestris and the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis at 10 μg/ml. Growth inhibition by these compounds was stable at pH 6–9 and after autoclaving. Because Rs1002 grew in the culture medium in which ralhibitins were incubated with the ralhibitin-insensitive bacteria, the unaffected bacteria may be able to inactivate the inhibitory effect of ralhibitins. These results suggest that ralhibitins might be potential lead compounds for the specific control of phytopathogenic bacteria.",
keywords = "Bactericide, Lead compounds, Ralhibitins, Ralstonia solanacearum",
author = "Ombiro, {Geofrey Sing ombe} and Taku Sawai and Yoshiteru Noutoshi and Yuta Nishina and Hidenori Matsui and Mikihiro Yamamoto and Kazuhiro Toyoda and Yuki Ichinose",
year = "2018",
month = "10",
day = "1",
doi = "10.1016/j.micres.2018.06.005",
language = "English",
volume = "215",
pages = "29--35",
journal = "Microbiological Research",
issn = "0944-5013",
publisher = "Urban und Fischer Verlag Jena",

}

TY - JOUR

T1 - Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis

AU - Ombiro, Geofrey Sing ombe

AU - Sawai, Taku

AU - Noutoshi, Yoshiteru

AU - Nishina, Yuta

AU - Matsui, Hidenori

AU - Yamamoto, Mikihiro

AU - Toyoda, Kazuhiro

AU - Ichinose, Yuki

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Plant pathogenic bacteria cause huge yield losses in crops globally. Therefore, finding effective bactericides to these pathogens is an immediate challenge. In this study, we sought compounds that specifically inhibit the growth of Ralstonia solanacearum. As a result, we identified one promising compound, 1-(4-bromophenyl)-6-methoxy-2,3,4,9-tetrahydro-1H-β-carboline, which inhibited the growth of R. solanacearum (Rs1002) from a pilot library of 376 chemicals provided from RIKEN. We further obtained its structural analogues and assessed their ability to inhibit Rs1002 growth. Then we identified five compounds, named ralhibitins A to E, that specifically inhibit growth of Rs1002 at >5 μg/ml final concentration. The most effective compounds, ralhibitins A, C, and E completely inhibited the growth of Rs1002 at 1.25 μg/ml. In addition, ralhibitins A to E inhibited growth of Xanthomonas oryzae pv. oryzae but not the other bacteria tested at a final concentration of 10 μg/ml. Whereas, ralhibitin E, besides inhibiting R. solanacearum and X. oryzae pv. oryzae, completely inhibited the growth of X. campestris pv. campestris and the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis at 10 μg/ml. Growth inhibition by these compounds was stable at pH 6–9 and after autoclaving. Because Rs1002 grew in the culture medium in which ralhibitins were incubated with the ralhibitin-insensitive bacteria, the unaffected bacteria may be able to inactivate the inhibitory effect of ralhibitins. These results suggest that ralhibitins might be potential lead compounds for the specific control of phytopathogenic bacteria.

AB - Plant pathogenic bacteria cause huge yield losses in crops globally. Therefore, finding effective bactericides to these pathogens is an immediate challenge. In this study, we sought compounds that specifically inhibit the growth of Ralstonia solanacearum. As a result, we identified one promising compound, 1-(4-bromophenyl)-6-methoxy-2,3,4,9-tetrahydro-1H-β-carboline, which inhibited the growth of R. solanacearum (Rs1002) from a pilot library of 376 chemicals provided from RIKEN. We further obtained its structural analogues and assessed their ability to inhibit Rs1002 growth. Then we identified five compounds, named ralhibitins A to E, that specifically inhibit growth of Rs1002 at >5 μg/ml final concentration. The most effective compounds, ralhibitins A, C, and E completely inhibited the growth of Rs1002 at 1.25 μg/ml. In addition, ralhibitins A to E inhibited growth of Xanthomonas oryzae pv. oryzae but not the other bacteria tested at a final concentration of 10 μg/ml. Whereas, ralhibitin E, besides inhibiting R. solanacearum and X. oryzae pv. oryzae, completely inhibited the growth of X. campestris pv. campestris and the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis at 10 μg/ml. Growth inhibition by these compounds was stable at pH 6–9 and after autoclaving. Because Rs1002 grew in the culture medium in which ralhibitins were incubated with the ralhibitin-insensitive bacteria, the unaffected bacteria may be able to inactivate the inhibitory effect of ralhibitins. These results suggest that ralhibitins might be potential lead compounds for the specific control of phytopathogenic bacteria.

KW - Bactericide

KW - Lead compounds

KW - Ralhibitins

KW - Ralstonia solanacearum

UR - http://www.scopus.com/inward/record.url?scp=85048627495&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048627495&partnerID=8YFLogxK

U2 - 10.1016/j.micres.2018.06.005

DO - 10.1016/j.micres.2018.06.005

M3 - Article

VL - 215

SP - 29

EP - 35

JO - Microbiological Research

JF - Microbiological Research

SN - 0944-5013

ER -