Solubility of FeO in (Mg,Fe)SiO3 perovskite and the post-perovskite phase transition

Shigehiko Tateno, Kei Hirose, Nagayoshi Sata, Yasuo Ohishi

Research output: Contribution to journalArticlepeer-review

71 Citations (Scopus)


Phase relations in Mg0.5Fe0.5SiO3 and Mg0.25Fe0.75SiO3 were investigated in a pressure range from 72 to 123 GPa on the basis of synchrotron X-ray diffraction measurements in situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). Results demonstrate that Mg0.5Fe0.5SiO3 perovskite is formed as a single phase at 85-108 GPa and 1800-2330 K, indicating a high solubility of FeO in (Mg,Fe)SiO3 perovskite at high pressures. Post-perovskite appears coexisting with perovskite in Mg0.5Fe0.5SiO3 above 106 GPa at 1410 K, the condition very close to the post-perovskite phase transition boundary in pure MgSiO3. The coexistence of perovskite and post-perovskite was observed to 123 GPa. In addition, post-perovskite was formed coexisting with perovskite also in Mg0.25Fe0.75SiO3 bulk composition at 106-123 GPa. In contrast to earlier experimental and theoretical studies, these results show that incorporation of FeO stabilizes perovskite at higher pressures. This could be due to a larger ionic radius of Fe2+ ion, which is incompatible with a small Mg2+ site in the post-perovskite phase.

Original languageEnglish
Pages (from-to)319-325
Number of pages7
JournalPhysics of the Earth and Planetary Interiors
Issue number3-5
Publication statusPublished - Mar 16 2007


  • D″ layer
  • In situ X-ray observation
  • Iron
  • Perovskite
  • Phase transition
  • Post-perovskite

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Geophysics
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'Solubility of FeO in (Mg,Fe)SiO<sub>3</sub> perovskite and the post-perovskite phase transition'. Together they form a unique fingerprint.

Cite this