TY - JOUR

T1 - Smith equivalent Aut(A6)-Representations are isomorphic

AU - Morimoto, Masaharu

N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.

PY - 2008/10

Y1 - 2008/10

N2 - Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawalowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equivalent real G-modules exist if aG, the number of real conjugacy classes of elements not of prime power order in G, is greater than or equal to 2. This paper shows that in the case G = Aut (A6), aG =2 any two Smith equivalent real G-modules are isomorphic.

AB - Many authors, e.g. M. Atiyah, R. Bott, J. Milnor, G. Bredon, S. Cappell, J. Shaneson, C. Sanchez, T. Petrie, E. Laitinen, K. Pawalowski, R. Solomon and so on, studied Smith equivalent representations for finite groups. Observing their results, E. Laitinen conjectured that nonisomorphic Smith equivalent real G-modules exist if aG, the number of real conjugacy classes of elements not of prime power order in G, is greater than or equal to 2. This paper shows that in the case G = Aut (A6), aG =2 any two Smith equivalent real G-modules are isomorphic.

UR - http://www.scopus.com/inward/record.url?scp=77950661391&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950661391&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-08-08891-6

DO - 10.1090/S0002-9939-08-08891-6

M3 - Article

AN - SCOPUS:77950661391

VL - 136

SP - 3683

EP - 3688

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 10

ER -