TY - GEN
T1 - Skill-based vibration suppression in manipulation of deformable linear objects
AU - Ding, Feng
AU - Huang, Jian
AU - Matsuno, Takayuki
AU - Fukuda, Toshio
PY - 2011/1/1
Y1 - 2011/1/1
N2 - Researches on robotic manipulation mainly focus on rigid objects. Whereas, manipulating deformable linear objects (DLOs) such as hoses, wires, cables is common in daily life and many domains such as manufacture, medical surgery and so on. The DLOs are more challengeable to handle, as the uncertainty results from oscillation at the end of DLOs may cause failure in the operation. During manipulating DLOs, especially moving them rapidly, the dynamic characteristics can not be neglected. In this paper, based on the dynamic model of DLOs, we illustrate a skill-based manipulating strategy for eliminating the vibration at the end of DLOs. The method is position-based and inspired from human manipulation skills. From our life experience, when people manipulate DLOs by hand, the oscillation will be significantly reduced if we suddenly lift it up with a certain acceleration. Based on the idea and dynamic model of DLOs, the control strategy by using fuzzy and PI controller is illustrated. The effectiveness of the proposed strategy is confirmed by numerical simulation results. The simulation results show that the proposed method can damp the vibration effectively.
AB - Researches on robotic manipulation mainly focus on rigid objects. Whereas, manipulating deformable linear objects (DLOs) such as hoses, wires, cables is common in daily life and many domains such as manufacture, medical surgery and so on. The DLOs are more challengeable to handle, as the uncertainty results from oscillation at the end of DLOs may cause failure in the operation. During manipulating DLOs, especially moving them rapidly, the dynamic characteristics can not be neglected. In this paper, based on the dynamic model of DLOs, we illustrate a skill-based manipulating strategy for eliminating the vibration at the end of DLOs. The method is position-based and inspired from human manipulation skills. From our life experience, when people manipulate DLOs by hand, the oscillation will be significantly reduced if we suddenly lift it up with a certain acceleration. Based on the idea and dynamic model of DLOs, the control strategy by using fuzzy and PI controller is illustrated. The effectiveness of the proposed strategy is confirmed by numerical simulation results. The simulation results show that the proposed method can damp the vibration effectively.
UR - http://www.scopus.com/inward/record.url?scp=84863301532&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863301532&partnerID=8YFLogxK
U2 - 10.1109/MHS.2011.6102220
DO - 10.1109/MHS.2011.6102220
M3 - Conference contribution
AN - SCOPUS:84863301532
SN - 9781457713613
T3 - 2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
SP - 421
EP - 426
BT - 2011 Int. Symp. on Micro-NanoMechatronics and Human Science, Symp. on "COE for Education and Research of Micro-Nano Mechatronics", Symposium on "Hyper Bio Assembler for 3D Cellular System Innovation"
PB - IEEE Computer Society
T2 - 22nd Annual Symp. on Micro-Nano Mechatronics and Human Science, MHS 2011, Held Jointly with the Symp. on COE for Education and Research of Micro-Nano Mechatronics, Micro-Nano GCOE 2011, Symp. on Hyper Bio Assembler for 3D Cellular System Innovation
Y2 - 6 November 2011 through 9 November 2011
ER -