Site-directed mutagenesis of two amino acid residues in cytochrome b559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity

Kaichiro Endo, Koichi Kobayashi, Hsing Ting Wang, Hsiu An Chu, Jian-Ren Shen, Hajime Wada

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.

Original languageEnglish
JournalPhotosynthesis Research
DOIs
Publication statusAccepted/In press - Jan 1 2018

Fingerprint

Mutagenesis
Phosphatidylglycerols
Photosystem II Protein Complex
phosphatidylglycerols
site-directed mutagenesis
cytochromes
Site-Directed Mutagenesis
quinones
photosystem II
Amino Acids
Molecules
amino acids
Dimers
mutants
High intensity light
Strain control
Quinones
light intensity
Monomers
Synechocystis sp. PCC 6803

Keywords

  • Cytochrome b
  • Phosphatidylglycerol
  • Photosystem II
  • Site-directed mutagenesis

ASJC Scopus subject areas

  • Biochemistry
  • Plant Science
  • Cell Biology

Cite this

@article{b9ac20dc9f334c4e9835774384ccd073,
title = "Site-directed mutagenesis of two amino acid residues in cytochrome b559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity",
abstract = "X-ray crystallographic analysis (1.9-{\AA} resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.",
keywords = "Cytochrome b, Phosphatidylglycerol, Photosystem II, Site-directed mutagenesis",
author = "Kaichiro Endo and Koichi Kobayashi and Wang, {Hsing Ting} and Chu, {Hsiu An} and Jian-Ren Shen and Hajime Wada",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/s11120-018-0555-3",
language = "English",
journal = "Photosynthesis Research",
issn = "0166-8595",
publisher = "Springer Netherlands",

}

TY - JOUR

T1 - Site-directed mutagenesis of two amino acid residues in cytochrome b559 α subunit that interact with a phosphatidylglycerol molecule (PG772) induces quinone-dependent inhibition of photosystem II activity

AU - Endo, Kaichiro

AU - Kobayashi, Koichi

AU - Wang, Hsing Ting

AU - Chu, Hsiu An

AU - Shen, Jian-Ren

AU - Wada, Hajime

PY - 2018/1/1

Y1 - 2018/1/1

N2 - X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.

AB - X-ray crystallographic analysis (1.9-Å resolution) of the cyanobacterial photosystem II (PSII) dimer showed the presence of five phosphatidylglycerol (PG) molecules per reaction center. One of the PG molecules, PG772, is located in the vicinity of the QB-binding site. To investigate the role of PG772 in PSII, we performed site-directed mutagenesis in the cytochrome (Cyt) b559 α subunit of Synechocystis sp. PCC 6803 to change two amino acids, Thr-5 and Ser-11, which interact with PG772. The photosynthetic activity of intact cells was slightly lower in all mutants than that of cells in the control strain; however, the oxygen-evolving PSII activity was decreased markedly in cells of mutants, as measured using artificial quinones (such as p-benzoquinone). Furthermore, electron transport from QA to QB was inhibited in mutants incubated with quinones, particularly under high-intensity light conditions. Lipid analysis of purified PSII showed approximately one PG molecule per reaction center, presumably PG772, was lost in the PSII dimer from the T5A and S11A mutants compared with that in the PSII dimer from the control strain. In addition, protein analysis of monomer and dimer showed decreased levels of PsbV and PsbU extrinsic proteins in the PSII monomer purified from T5A and S11A mutants. These results suggest that site-directed mutagenesis of Thr-5 and Ser-11, which presumably causes the loss of PG772, induces quinone-dependent inhibition of PSII activity under high-intensity light conditions and destabilizes the binding of extrinsic proteins to PSII.

KW - Cytochrome b

KW - Phosphatidylglycerol

KW - Photosystem II

KW - Site-directed mutagenesis

UR - http://www.scopus.com/inward/record.url?scp=85050541525&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050541525&partnerID=8YFLogxK

U2 - 10.1007/s11120-018-0555-3

DO - 10.1007/s11120-018-0555-3

M3 - Article

C2 - 30039358

AN - SCOPUS:85050541525

JO - Photosynthesis Research

JF - Photosynthesis Research

SN - 0166-8595

ER -