Abstract
We show that the singularities of spacelike maximal surfaces in Lorentz-Minkowski 3-space generically consist of cuspidal edges, swallowtails and cuspidal cross caps. The same result holds for spacelike mean curvature one surfaces in de Sitter 3-space. To prove these, we shall give a simple criterion for a given singular point on a surface to be a cuspidal cross cap.
Original language | English |
---|---|
Pages (from-to) | 827-848 |
Number of pages | 22 |
Journal | Mathematische Zeitschrift |
Volume | 259 |
Issue number | 4 |
DOIs | |
Publication status | Published - Aug 2008 |
Keywords
- Cuspidal cross cap
- De Sitter space
- Maximal surfaces
- Minkowski space
ASJC Scopus subject areas
- Mathematics(all)