Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

Yoshimitsu Kobashi, Hiroki Maekawa, Satoshi Kato, Jiro Senda

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency. Numerical investigation into the pressure rise rate reduction mechanism was also performed by use of a multi-component fuel model developed by the authors. The calculated result showed that the pressure rise rate was reduced due to the difference in the vapor concentrations between two components which have difference reactivity.

Original languageEnglish
Pages (from-to)1404-1413
Number of pages10
JournalSAE International Journal of Fuels and Lubricants
Volume5
Issue number3
DOIs
Publication statusPublished - Oct 2012
Externally publishedYes

ASJC Scopus subject areas

  • Fuel Technology
  • Pollution

Fingerprint

Dive into the research topics of 'Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray'. Together they form a unique fingerprint.

Cite this