Short Hydrogen bond between redox-active tyrosine Y Z and D1-His190 in the photosystem II crystal structure

Keisuke Saito, Jian Ren Shen, Toyokazu Ishida, Hiroshi Ishikita

    Research output: Contribution to journalArticlepeer-review

    83 Citations (Scopus)


    The crystal structure of photosystem II (PSII) analyzed at a resolution of 1.9 Å revealed a remarkably short H-bond between redox-active tyrosine Y Z and D1-His190 (2.46 Å donor-acceptor distance). Using large-scale quantum mechanical/molecular mechanical (QM/MM) calculations with the explicit PSII protein environment, we were able to reproduce this remarkably short H-bond in the original geometry of the crystal structure in the neutral [Y ZO•••H•••N ε-His- N δH•••O=Asn] state, but not in the oxidized states, indicating that the neutral state was the one observed in the crystal structure. In addition to the appropriate redox/protonation state of Y Z and D1-His190, we found that the presence of a cluster of water molecules played a key role in shortening the distance between Y Z and D1-His190. The orientations of the water molecules in the cluster were energetically stabilized by the highly polarized PSII protein environment, where the Ca ion of the oxygen-evolving complex (OEC) and the OEC ligand D1-Glu189 were also involved.

    Original languageEnglish
    Pages (from-to)9836-9844
    Number of pages9
    Issue number45
    Publication statusPublished - Nov 15 2011

    ASJC Scopus subject areas

    • Biochemistry


    Dive into the research topics of 'Short Hydrogen bond between redox-active tyrosine Y <sub>Z</sub> and D1-His190 in the photosystem II crystal structure'. Together they form a unique fingerprint.

    Cite this