Scaling between periodic Anderson and Kondo lattice models

R. Dong, J. Otsuki, S. Y. Savrasov

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N=2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value.

Original languageEnglish
Article number155106
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume87
Issue number15
DOIs
Publication statusPublished - Apr 2 2013
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Scaling between periodic Anderson and Kondo lattice models'. Together they form a unique fingerprint.

  • Cite this