Role of urinary H2O2, 8-iso-PGF2α, and serum oxLDL/β2GP1 complex in the diabetic kidney disease

Rani Sauriasari, Afina Irsyania Zulfa, Andisyah Putri Sekar, Nuriza Ulul Azmi, Xian Wen Tan, Eiji Matsuura

Research output: Contribution to journalArticlepeer-review

Abstract

Oxidant species is reported as a major determinant in the pathophysiology of diabetic kidney disease. However, reactive oxygen species (ROS) formation in the initial phase and progressing phase of diabetic kidney disease remains unclear. Therefore, we conducted this study to find out what ROS and their modified product are associated with eGFR in type 2 diabetes mellitus (T2DM) patients. A cross-sectional study was performed on 227 T2DM patients. The study subjects were divided into three groups based on their eGFR stage (Group 1, eGFR > 89 ml/min/1.73 m2; Group 2, eGFR = 60–89 ml/min/1.73 m2; and Group 3, eGFR < 60 ml/min/1.73 m2). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum oxLDL/β2GPI complex and urinary 8-iso-PGF2α, while ferrous ion oxidation xylenol orange method 1 (FOX-1) was used to measure urinary hydrogen peroxide (H2O2). H2O2 significantly decreased across the groups, whereas OxLDL/β2GPI complex increased, but not significant, and there was no trend for 8-iso-PGF2α. Consistently, in the total study population, only H2O2 showed correlation with eGFR (r = 0.161, p = 0.015). Multiple linear regression analysis showed that significant factors for increased eGFR were H2O2, diastolic blood pressure, and female. Whereas increased systolic blood pressure and age were significant factors affecting the decrease of eGFR. We also found that urinary H2O2 had correlation with serum oxLDL/β2GPI complex in total population. This finding could lead to further research on urinary H2O2 for early detection and research on novel therapies of diabetic kidney disease.

Original languageEnglish
Article numbere0263113
JournalPloS one
Volume17
Issue number4 April
DOIs
Publication statusPublished - Apr 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Role of urinary H2O2, 8-iso-PGF2α, and serum oxLDL/β2GP1 complex in the diabetic kidney disease'. Together they form a unique fingerprint.

Cite this