Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium

K. Kutsukake, T. Iino

Research output: Contribution to journalArticle

119 Citations (Scopus)

Abstract

In the flagellar regulon of Salmonella typhimurium, the flagellar operons are divided into three classes, 1, 2, and 3, with respect to transcriptional hierarchy. The class 2 operons are controlled positively by the class 1 genes, flhD and flhC. The class 3 operons are controlled positively by fliA and negatively by flgM. It has been shown that FliA is a sigma factor specific for class 3, whereas FlgM is an anti-sigma factor which binds FliA to prevent its association with RNA polymerase core enzyme. Therefore, the FliA-FlgM regulatory system has been believed to control specifically the class 3 operons. In the present study, we showed that the flgM mutation enhanced the expression of class 2 by more than fivefold. When a fliA mutation was present simultaneously, this enhancement was not observed. These results indicate that the FliA-FlgM regulatory system is involved not only in the expression of class 3 but also in that of class 2. However, though neither flhD nor flhC mutants could express the class 2 operons, the fliA mutants permitted the basal-level expression of those operons. Therefore, FlhD and FlhC are indispensable for the expression of class 2, whereas FliA is required only for its enhancement in the FlgM-depletion condition. Furthermore, we showed that the flgM mutation resulted in a two- to threefold increase in flagellar number. On the basis of these results, we propose that the relative concentration of FliA and FlgM may play an important role in the determination of flagellar numbers produced by a single cell.

Original languageEnglish
Pages (from-to)3598-3605
Number of pages8
JournalJournal of Bacteriology
Volume176
Issue number12
Publication statusPublished - 1994
Externally publishedYes

Fingerprint

Regulon
Salmonella typhimurium
Operon
Sigma Factor
Mutation
DNA-Directed RNA Polymerases
Enzymes
Genes

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Immunology

Cite this

Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. / Kutsukake, K.; Iino, T.

In: Journal of Bacteriology, Vol. 176, No. 12, 1994, p. 3598-3605.

Research output: Contribution to journalArticle

@article{78acbac76d8e4fac93b7c16186e2af58,
title = "Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium",
abstract = "In the flagellar regulon of Salmonella typhimurium, the flagellar operons are divided into three classes, 1, 2, and 3, with respect to transcriptional hierarchy. The class 2 operons are controlled positively by the class 1 genes, flhD and flhC. The class 3 operons are controlled positively by fliA and negatively by flgM. It has been shown that FliA is a sigma factor specific for class 3, whereas FlgM is an anti-sigma factor which binds FliA to prevent its association with RNA polymerase core enzyme. Therefore, the FliA-FlgM regulatory system has been believed to control specifically the class 3 operons. In the present study, we showed that the flgM mutation enhanced the expression of class 2 by more than fivefold. When a fliA mutation was present simultaneously, this enhancement was not observed. These results indicate that the FliA-FlgM regulatory system is involved not only in the expression of class 3 but also in that of class 2. However, though neither flhD nor flhC mutants could express the class 2 operons, the fliA mutants permitted the basal-level expression of those operons. Therefore, FlhD and FlhC are indispensable for the expression of class 2, whereas FliA is required only for its enhancement in the FlgM-depletion condition. Furthermore, we showed that the flgM mutation resulted in a two- to threefold increase in flagellar number. On the basis of these results, we propose that the relative concentration of FliA and FlgM may play an important role in the determination of flagellar numbers produced by a single cell.",
author = "K. Kutsukake and T. Iino",
year = "1994",
language = "English",
volume = "176",
pages = "3598--3605",
journal = "Journal of Bacteriology",
issn = "0021-9193",
publisher = "American Society for Microbiology",
number = "12",

}

TY - JOUR

T1 - Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium

AU - Kutsukake, K.

AU - Iino, T.

PY - 1994

Y1 - 1994

N2 - In the flagellar regulon of Salmonella typhimurium, the flagellar operons are divided into three classes, 1, 2, and 3, with respect to transcriptional hierarchy. The class 2 operons are controlled positively by the class 1 genes, flhD and flhC. The class 3 operons are controlled positively by fliA and negatively by flgM. It has been shown that FliA is a sigma factor specific for class 3, whereas FlgM is an anti-sigma factor which binds FliA to prevent its association with RNA polymerase core enzyme. Therefore, the FliA-FlgM regulatory system has been believed to control specifically the class 3 operons. In the present study, we showed that the flgM mutation enhanced the expression of class 2 by more than fivefold. When a fliA mutation was present simultaneously, this enhancement was not observed. These results indicate that the FliA-FlgM regulatory system is involved not only in the expression of class 3 but also in that of class 2. However, though neither flhD nor flhC mutants could express the class 2 operons, the fliA mutants permitted the basal-level expression of those operons. Therefore, FlhD and FlhC are indispensable for the expression of class 2, whereas FliA is required only for its enhancement in the FlgM-depletion condition. Furthermore, we showed that the flgM mutation resulted in a two- to threefold increase in flagellar number. On the basis of these results, we propose that the relative concentration of FliA and FlgM may play an important role in the determination of flagellar numbers produced by a single cell.

AB - In the flagellar regulon of Salmonella typhimurium, the flagellar operons are divided into three classes, 1, 2, and 3, with respect to transcriptional hierarchy. The class 2 operons are controlled positively by the class 1 genes, flhD and flhC. The class 3 operons are controlled positively by fliA and negatively by flgM. It has been shown that FliA is a sigma factor specific for class 3, whereas FlgM is an anti-sigma factor which binds FliA to prevent its association with RNA polymerase core enzyme. Therefore, the FliA-FlgM regulatory system has been believed to control specifically the class 3 operons. In the present study, we showed that the flgM mutation enhanced the expression of class 2 by more than fivefold. When a fliA mutation was present simultaneously, this enhancement was not observed. These results indicate that the FliA-FlgM regulatory system is involved not only in the expression of class 3 but also in that of class 2. However, though neither flhD nor flhC mutants could express the class 2 operons, the fliA mutants permitted the basal-level expression of those operons. Therefore, FlhD and FlhC are indispensable for the expression of class 2, whereas FliA is required only for its enhancement in the FlgM-depletion condition. Furthermore, we showed that the flgM mutation resulted in a two- to threefold increase in flagellar number. On the basis of these results, we propose that the relative concentration of FliA and FlgM may play an important role in the determination of flagellar numbers produced by a single cell.

UR - http://www.scopus.com/inward/record.url?scp=0028365830&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028365830&partnerID=8YFLogxK

M3 - Article

C2 - 8206838

AN - SCOPUS:0028365830

VL - 176

SP - 3598

EP - 3605

JO - Journal of Bacteriology

JF - Journal of Bacteriology

SN - 0021-9193

IS - 12

ER -