Renormalization group calculations for wetting transitions of infinite order and continuously varying order: Local interface Hamiltonian approach

J. O. Indekeu, K. Koga, H. Hooyberghs, A. O. Parry

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We study the effect of thermal fluctuations on the wetting phase transitions of infinite order and of continuously varying order, recently discovered within a mean-field density-functional model for three-phase equilibria in systems with short-range forces and a two-component order parameter. Using linear functional renormalization group calculations within a local interface Hamiltonian approach, we show that the infinite-order transitions are robust. The exponential singularity (implying 2-αs=∞) of the surface free energy excess at infinite-order wetting as well as the precise algebraic divergence (with βs=-1) of the wetting layer thickness are not modified as long as ω<2, with ω the dimensionless wetting parameter that measures the strength of thermal fluctuations. The interface width diverges algebraically and universally (with ν⊥=1/2). In contrast, the nonuniversal critical wetting transitions of finite but continuously varying order are modified when thermal fluctuations are taken into account, in line with predictions from earlier calculations on similar models displaying weak, intermediate, and strong fluctuation regimes.

Original languageEnglish
Article number022122
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume88
Issue number2
DOIs
Publication statusPublished - Aug 13 2013

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Renormalization group calculations for wetting transitions of infinite order and continuously varying order: Local interface Hamiltonian approach'. Together they form a unique fingerprint.

  • Cite this