Relation of Photochemical Internalization to Heat, pH and Ca2+ Ions

Tet Htut Soe, Tomotaka Nanjo, Kazunori Watanabe, Takashi Ohtsuki

Research output: Contribution to journalArticle

Abstract

The inefficient endosomal escape of drugs or macromolecules is a major obstacle to achieving successful delivery to therapeutic targets. An efficient approach to circumvent this barrier is photochemical internalization (PCI), which uses light and photosensitizers for endosomal escape of the delivered macromolecules. The PCI mechanism is related to photogenerated singlet oxygen, but the mechanism is still unclear. In this study, we examined the relation of PCI to heat, pH and Ca2+ ions using cell penetrating peptide (CPP)-cargo-photosensitizer (Alexa546 or Alexa633) conjugates. A cell temperature changing experiment demonstrated that heat (thermal mechanism) does not significantly contribute to the photoinduced endosomal escape. Inhibition of V-ATPase proton pump activity and endosomal pH upregulation indicated that PCI-mediated endosomal escape needs endosomal acidification prior to photoirradiation. Imaging of the CPP-cargo-photosensitizer and Ca2+ ions during photostimulation showed that intracellular calcium increase is not the cause of the endosomal escape of the complex. The increment is mainly due to Ca2+ influx. These findings show the importance of extra- and intracellular milieu conditions in the PCI mechanism and enrich our understanding of PCI-related changes in cell.

Original languageEnglish
JournalPhotochemistry and Photobiology
DOIs
Publication statusAccepted/In press - Jan 1 2019

ASJC Scopus subject areas

  • Biochemistry
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Relation of Photochemical Internalization to Heat, pH and Ca<sup>2+</sup> Ions'. Together they form a unique fingerprint.

  • Cite this