TY - JOUR
T1 - Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs
AU - Wakai, Takuya
AU - Zhang, Nan
AU - Vangheluwe, Peter
AU - Fissore, Rafael A.
PY - 2013/12/15
Y1 - 2013/12/15
N2 - Changes in the intracellular concentration of free calcium ([Ca2+]i) regulate diverse cellular processes including fertilization. In mammalian eggs, the [Ca2+]i changes induced by the sperm unfold in a pattern of periodical rises, also known as [Ca2+]i oscillations. The source of Ca2+ during oscillations is the endoplasmic reticulum ([Ca2+]ER), but it is presently unknown how [Ca2+]ER is regulated. Here, we show using mouse eggs that [Ca2+]i oscillations induced by a variety of agonists, including PLCf, SrCl2 and thimerosal, provoke simultaneous but opposite changes in [Ca2+]ER and cause differential effects on the refilling and overall load of [Ca2+]ER. We also found that Ca2+ influx is required to refill [Ca2+]ER, because the loss of [Ca2+]ER was accelerated in medium devoid of Ca2+. Pharmacological inactivation of the function of the mitochondria and of the Ca2+-ATPase pumps PMCA and SERCA altered the pattern of oscillations and abruptly reduced [Ca2+]ER, especially after inactivation of mitochondria and SERCA functions. We also examined the expression of SERCA2b protein and found that it was expressed throughout oocyte maturation and attained a conspicuous cortical cluster organization in mature eggs. We show that its overexpression reduces the duration of inositol-1,4,5-trisphosphate-induced [Ca2+]i rises, promotes initiation of oscillations and enhances refilling of [Ca2+]ER. Collectively, our results provide novel insights on the regulation of [Ca2+]ER oscillations, which underlie the unique Ca2+-signalling system that activates the developmental program in mammalian eggs.
AB - Changes in the intracellular concentration of free calcium ([Ca2+]i) regulate diverse cellular processes including fertilization. In mammalian eggs, the [Ca2+]i changes induced by the sperm unfold in a pattern of periodical rises, also known as [Ca2+]i oscillations. The source of Ca2+ during oscillations is the endoplasmic reticulum ([Ca2+]ER), but it is presently unknown how [Ca2+]ER is regulated. Here, we show using mouse eggs that [Ca2+]i oscillations induced by a variety of agonists, including PLCf, SrCl2 and thimerosal, provoke simultaneous but opposite changes in [Ca2+]ER and cause differential effects on the refilling and overall load of [Ca2+]ER. We also found that Ca2+ influx is required to refill [Ca2+]ER, because the loss of [Ca2+]ER was accelerated in medium devoid of Ca2+. Pharmacological inactivation of the function of the mitochondria and of the Ca2+-ATPase pumps PMCA and SERCA altered the pattern of oscillations and abruptly reduced [Ca2+]ER, especially after inactivation of mitochondria and SERCA functions. We also examined the expression of SERCA2b protein and found that it was expressed throughout oocyte maturation and attained a conspicuous cortical cluster organization in mature eggs. We show that its overexpression reduces the duration of inositol-1,4,5-trisphosphate-induced [Ca2+]i rises, promotes initiation of oscillations and enhances refilling of [Ca2+]ER. Collectively, our results provide novel insights on the regulation of [Ca2+]ER oscillations, which underlie the unique Ca2+-signalling system that activates the developmental program in mammalian eggs.
KW - Ca oscillations
KW - Egg activation
KW - Endoplasmic reticulum
KW - Fertilization
KW - Oocyte maturation
KW - Serca
UR - http://www.scopus.com/inward/record.url?scp=84890529647&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890529647&partnerID=8YFLogxK
U2 - 10.1242/jcs.136549
DO - 10.1242/jcs.136549
M3 - Article
C2 - 24101727
AN - SCOPUS:84890529647
SN - 0021-9533
VL - 126
SP - 5714
EP - 5724
JO - The Quarterly journal of microscopical science
JF - The Quarterly journal of microscopical science
IS - 24
ER -