Regulation of a proteinaceous elicitor-induced Ca 2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells

Haruyasu Hamada, Takamitsu Kurusu, Eiji Okuma, Hiroshi Nokajima, Masahiro Kiyoduka, Tomoko Koyano, Yoshimi Sugiyama, Kazunori Okada, Jinichiro Koga, Hikaru Saji, Akio Miyao, Hirohiko Hirochika, Hisakazu Yamane, Yoshiyuki Murata, Kazuyuki Kuchitsu

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)


Pathogen/microbe- or plant-derived signaling molecules (PAMPs/MAMPs/DAMPs) or elicitors induce increases in the cytosolic concentration of free Ca 2+ followed by a series of defense responses including biosynthesis of antimicrobial secondary metabolites called phytoalexins; however, the molecular links and regulatory mechanisms of the phytoalexin biosynthesis remains largely unknown. A putative voltage-gated cation channel, OsTPC1 has been shown to play a critical role in hypersensitive cell death induced by a fungal xylanase protein (TvX) in suspension-cultured rice cells. Here we show that TvX induced a prolonged increase in cytosolic Ca 2+, mainly due to a Ca 2+ influx through the plasma membrane. Membrane fractionation by two-phase partitioning and immunoblot analyses revealed that OsTPC1 is localized predominantly at the plasma membrane. In retrotransposon-insertional Ostpc1 knock-out cell lines harboring a Ca 2+-sensitive photoprotein, aequorin, TvX-induced Ca 2+ elevation was significantly impaired, which was restored by expression of OsTPC1. TvX-induced production of major diterpenoid phytoalexins and the expression of a series of diterpene cyclase genes involved in phytoalexin biosynthesis were also impaired in the Ostpc1 cells. Whole cell patch clamp analyses of OsTPC1 heterologously expressed in HEK293T cells showed its voltage-dependent Ca 2+-permeability. These results suggest that OsTPC1 plays a crucial role in TvX-induced Ca 2+ influx as a plasma membrane Ca 2+-permeable channel consequently required for the regulation of phytoalexin biosynthesis in cultured rice cells.

Original languageEnglish
Pages (from-to)9931-9939
Number of pages9
JournalJournal of Biological Chemistry
Issue number13
Publication statusPublished - Mar 23 2012

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Regulation of a proteinaceous elicitor-induced Ca <sup>2+</sup> influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells'. Together they form a unique fingerprint.

Cite this