Abstract
Vascular endothelial growth factor (VEGF) is reported to play a neuroprotective role through a VEGF receptor, fetal liver kinase-1 (Flk-1) in vitro. We investigated whether reduction of Flk-1 could induce motor neuron loss in rat spinal cord by inhibiting the expression of Flk-1 in rat spinal cord using antisense oligodeoxynucleotides (ODNs) against the Flk-1 receptor. Rat spinal cord was repetitively exposed to 12% hypoxia, and the change of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway and the mitogen-activated protein kinase kinase (MEK)/extracellular-signal-regulated kinase (ERK) pathway was examined. Intrathecal infusion of Flk-1 antisense ODNs for 7 days suppressed almost completely Flk-1 expression in the lumbar segment of the spinal cord and was followed by a hypoxic challenge with 12% oxygen for 1 h that was repeated for 7 more days. In the lumbar segment, we observed that reduced Flk-1 expression and hypoxic challenge for 7 days resulted in approximately 50% loss of motor neurons, in which the activation of Akt and ERK, that is, increased levels of phosphorylated-Akt and of phosphorylated-ERK by hypoxia, was markedly inhibited. In contrast, the reduction of Flk-1 expression alone did not induce motor neuron loss. These results suggest that VEGF exerts its protective effect on motor neurons against hypoxia-induced toxicity by the Flk-1 receptor through the PI3-K/Akt and the MEK/ERK signaling pathways.
Original language | English |
---|---|
Pages (from-to) | 175-182 |
Number of pages | 8 |
Journal | Neuroscience |
Volume | 132 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2005 |
Keywords
- ALS
- Flk-1
- Hypoxia
- Motor neuron
- Survival signal
- VEGF
ASJC Scopus subject areas
- Neuroscience(all)