Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus

Gábor Sipka, Pavel Müller, Klaus Brettel, Melinda Magyar, László Kovács, Qingjun Zhu, Yanan Xiao, Guangye Han, Petar H. Lambrev, Jian Ren Shen, Győző Garab

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17 ns (∼50%) and 167 ns (∼30%), and a longer-lived component (∼20%). This kinetics are attributed to re-reduction of P680 •+ by the donor side of PSII. In contrast, upon second-flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (∼60%) and 10 ns (∼30%), attributed to recombination of the primary radical pair P680 •+ Pheo •– , and a small longer-lived component (∼10%). These data confirm that only the first STSF is capable of generating stable charge separation – leading to the reduction of Q A ; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.

Original languageEnglish
Pages (from-to)22-32
Number of pages11
JournalPhysiologia Plantarum
Volume166
Issue number1
DOIs
Publication statusPublished - May 2019

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint Dive into the research topics of 'Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus'. Together they form a unique fingerprint.

  • Cite this