Recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing Ag85B-IL-7 fusion protein enhances IL-17A-producing innate γδ T cells

Shinya Hatano, Toshiki Tamura, Masayuki Umemura, Goro Matsuzaki, Naoya Ohara, Yasunobu Yoshikai

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Interleukin 7 (IL-7) has an important function in the development and maintenance of IL-17A+ γδ T cells. We here constructed a recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing antigen 85B (Ag85B)-IL-7 fusion protein (rBCG-Ag85B-IL-7). The Ag85B-IL-7 fusion protein and IL-7 were detected in the bacterial lysate of rBCG-Ag85B-IL-7. rBCG-Ag85B-IL-7 was the same in number as control rBCG expressing Ag85B (rBCG-Ag85B) in the lung at the early stage after intravenous inoculation, whereas the numbers of IL-17A+ γδ T cells and Ag-specific Th1 cells were significantly higher in the lungs of mice inoculated with rBCG-Ag85B-IL-7 than those inoculated with rBCG-Ag85B. The Ag-specific Th1 cell response was impaired in mice lacking IL-17A+ γδ T cells after inoculation with rBCG-Ag85B-IL-7. Thus, rBCG-Ag85B-IL-7 increases the pool size of IL-17A+ γδ T cells, which subsequently augment the Th1 response to mycobacterial infection.

Original languageEnglish
Pages (from-to)2490-2495
Number of pages6
JournalVaccine
Volume34
Issue number22
DOIs
Publication statusPublished - May 11 2016
Externally publishedYes

Keywords

  • BCG
  • Bacteria
  • Cytokines
  • IL-17A
  • IL-7
  • γδ T cells

ASJC Scopus subject areas

  • Molecular Medicine
  • Immunology and Microbiology(all)
  • veterinary(all)
  • Public Health, Environmental and Occupational Health
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing Ag85B-IL-7 fusion protein enhances IL-17A-producing innate γδ T cells'. Together they form a unique fingerprint.

Cite this