Rational surface automorphisms preserving cuspidal anticanonical curves

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

This article is concerned with automorphisms on rational surfaces. We develop a method for constructing automorphisms in terms of the concept of realization of orbit data, and show that any automorphism preserving a cuspidal anticanonical curve is constructed from a realization of orbit data. Moreover, some properties of automorphisms are discussed.

Original languageEnglish
Pages (from-to)635-659
Number of pages25
JournalMathematische Annalen
Volume365
Issue number1-2
DOIs
Publication statusPublished - Jun 1 2016
Externally publishedYes

Fingerprint

Rational Surface
Automorphisms
Curve
Orbit
Automorphism

Keywords

  • 14J26
  • 14J50
  • 37F99

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Rational surface automorphisms preserving cuspidal anticanonical curves. / Uehara, Takato.

In: Mathematische Annalen, Vol. 365, No. 1-2, 01.06.2016, p. 635-659.

Research output: Contribution to journalArticle

@article{483119af5b3f4e8db2a13fd03abf25f9,
title = "Rational surface automorphisms preserving cuspidal anticanonical curves",
abstract = "This article is concerned with automorphisms on rational surfaces. We develop a method for constructing automorphisms in terms of the concept of realization of orbit data, and show that any automorphism preserving a cuspidal anticanonical curve is constructed from a realization of orbit data. Moreover, some properties of automorphisms are discussed.",
keywords = "14J26, 14J50, 37F99",
author = "Takato Uehara",
year = "2016",
month = "6",
day = "1",
doi = "10.1007/s00208-015-1275-z",
language = "English",
volume = "365",
pages = "635--659",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "1-2",

}

TY - JOUR

T1 - Rational surface automorphisms preserving cuspidal anticanonical curves

AU - Uehara, Takato

PY - 2016/6/1

Y1 - 2016/6/1

N2 - This article is concerned with automorphisms on rational surfaces. We develop a method for constructing automorphisms in terms of the concept of realization of orbit data, and show that any automorphism preserving a cuspidal anticanonical curve is constructed from a realization of orbit data. Moreover, some properties of automorphisms are discussed.

AB - This article is concerned with automorphisms on rational surfaces. We develop a method for constructing automorphisms in terms of the concept of realization of orbit data, and show that any automorphism preserving a cuspidal anticanonical curve is constructed from a realization of orbit data. Moreover, some properties of automorphisms are discussed.

KW - 14J26

KW - 14J50

KW - 37F99

UR - http://www.scopus.com/inward/record.url?scp=84938719013&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938719013&partnerID=8YFLogxK

U2 - 10.1007/s00208-015-1275-z

DO - 10.1007/s00208-015-1275-z

M3 - Article

AN - SCOPUS:84938719013

VL - 365

SP - 635

EP - 659

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 1-2

ER -