Protein membrane overlay assay: A protocol to test interaction between soluble and insoluble proteins in vitro

Shoko Ueki, Benoît Lacroix, Vitaly Citovsky

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Validating interactions between different proteins is vital for investigation of their biological functions on the molecular level. There are several methods, both in vitro and in vivo, to evaluate protein binding, and at least two methods that complement the shortcomings of each other should be conducted to obtain reliable insights. For an in vivo assay, the bimolecular fluorescence complementation (BiFC) assay represents the most popular and least invasive approach that enables to detect protein-protein interaction within living cells, as well as identify the intracellular localization of the interacting proteins. In this assay, non-fluorescent N- and C-terminal halves of GFP or its variants are fused to tested proteins, and when the two fusion proteins are brought together due to the tested proteins' interactions, the fluorescent signal is reconstituted. Because its signal is readily detectable by epifluorescence or confocal microscopy, BiFC has emerged as a powerful tool of choice among cell biologists for studying about protein-protein interactions in living cells. This assay, however, can sometimes produce false positive results. For example, the fluorescent signal can be reconstituted by two GFP fragments arranged as far as 7 nm from each other due to close packing in a small subcellular compartment, rather that due to specific interactions. Due to these limitations, the results obtained from live cell imaging technologies should be confirmed by an independent approach based on a different principle for detecting protein interactions. Co-immunoprecipitation (Co-IP) or glutathione transferase (GST) pull-down assays represent such alternative methods that are commonly used to analyze protein-protein interactions in vitro. However, iIn these assays, however, the tested proteins must be readily soluble in the buffer that supportsused for the binding reaction. Therefore, specific interactions involving an insoluble protein cannot be assessed by these techniques. Here, we illustrate the protocol for the protein membrane overlay binding assay, which circumvents this difficulty. In this technique, interaction between soluble and insoluble proteins can be reliably tested because one of the proteins is immobilized on a membrane matrix. This method, in combination with in vivo experiments, such as BiFC, provides a reliable approach to investigate and characterize interactions faithfully between soluble and insoluble proteins. In this article, binding between Tobacco mosaic virus (TMV) movement protein (MP), which exerts multiple functions during viral cell-to-cell transport, and a recently identified plant cellular interactor, tobacco ankyrin repeat-containing protein (ANK), is demonstrated using this technique.

Original languageEnglish
Article numbere2961
JournalJournal of Visualized Experiments
Issue number54
DOIs
Publication statusPublished - Aug 2011
Externally publishedYes

Keywords

  • In vitro
  • Insoluble protein
  • Issue 54
  • Molecular Biology
  • Nitrocellulose membrane
  • Overlay
  • Protein-protein interactions
  • Western blotting

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Protein membrane overlay assay: A protocol to test interaction between soluble and insoluble proteins in vitro'. Together they form a unique fingerprint.

  • Cite this