Abstract
We have investigated the molecular mechanisms regulating the necrosis and apoptosis that occur on treatment of mouse mammary tumor FM3A cells with 5-fluoro-2′-deoxyuridine (FUdR), a potent anticancer agent, using the original clone F28-7 and its variant F28-7-A cells. Previously, we reported an interesting observation that FUdR induces a necrotic morphology in F28-7 but an apoptotic morphology in F28-7-A cells. We have now analyzed the protein expression profiles of these FUdR-induced necrosis and apoptosis. Thus, proteome analysis of these clones by two-dimensional gel electrophoresis and mass spectrometry showed that the cytoplasmic intermediate filament protein, cytokeratin-19, is expressed at a significantly higher level in F28-7 than in F28-7-A cells. This strong expression was detected both in untreated and FUdR-treated stages of F28-7 cells. We interpreted this phenomenon as suggesting that cytokeratin-19 possesses a function in leading the cell to apoptosis. We performed a knockdown of cytokeratin-19 expression in F28-7 cells by use of the small interfering RNA technique. Indeed, a lowering of the cytokeratin-19 expression down to the level in F28-7-A occurred, and the FUdR-induced death morphology of this knockdown F28-7 was apoptosis, instead of the necrosis usually observable in the FUdR-treated F28-7. It is known that the cytoskeletal protein cytokeratin-19 undergoes caspase-mediated degradation during apoptosis. Our present finding provides an interesting possibility that cytokeratin-19 may have a key role in regulating cell-death morphology.
Original language | English |
---|---|
Pages (from-to) | 2329-2338 |
Number of pages | 10 |
Journal | Journal of Proteome Research |
Volume | 9 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 7 2010 |
Keywords
- 5-fluoro-2′-deoxyuridine (FUdR)
- Apoptosis
- Cell death
- Cytokeratin-19
- Intermediate filament
- Lamin B1
- Necrosis
- Proteome analysis
- SiRNA
ASJC Scopus subject areas
- Biochemistry
- Chemistry(all)