TY - JOUR
T1 - Prostaglandin E2 inhibits advanced glycation end product-induced adhesion molecule expression on monocytes, cytokine production, and lymphocyte proliferation during human mixed lymphocyte reaction
AU - Takahashi, Hideo Kohka
AU - Zhang, Jiyong
AU - Mori, Shuji
AU - Liu, Keyue
AU - Wake, Hidenori
AU - Liu, Rui
AU - Sadamori, Hiroshi
AU - Matsuda, Hiroaki
AU - Yagi, Takahito
AU - Yoshino, Tadashi
AU - Nishibori, Masahiro
PY - 2010
Y1 - 2010
N2 - Posttransplant diabetes mellitus is a frequent complication among transplant recipients. Ligation of advanced glycation end products (AGEs) with their receptor on monocytes/macrophages plays a role in diabetes complications. The enhancement of adhesion molecule expression on monocytes/macrophages activates T cells, reducing allograft survival. In previous work, we found that toxic AGEs, AGE-2 and AGE-3, induced the expression of intracellular adhesion molecule-1, B7.1, B7.2, and CD40 on monocytes, production of interferon-γ and tumor necrosis factor α, and lymphocyte proliferation during human mixed lymphocyte reaction. AGE-induced up-regulation of adhesion molecule expression was involved in cytokine production and lymphocyte proliferation. Prostaglandin E2 (PGE2) concentration-dependently inhibited the actions of AGE-2 and AGE-3. The effects of PGE2 were mimicked by an EP2 receptor agonist, ONO-AE1-259-01 (11,15-O-dimethyl PGE2), and an EP4 receptor agonist, ONO-AE1-329 [16-(3-methoxymethyl)phenyl-omega-tetranor-3,7dithia PGE1]. An EP2 receptor antagonist, AH6809 (6-isopropoxy-9-oxaxanthene-2-carboxylic acid), and an EP4 receptor antagonist, AH23848 [(4Z)-7-[(rel-1S,2S,5R)-5-((1,1′-biphenyl-4- yl)methoxy)-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid], inhibited the actions of PGE2. The stimulation of EP2 and EP4 receptors is reported to increase cAMP levels. The effects of PGE2 were reversed by protein kinase A (PKA) inhibitors and mimicked by dibutyryl cAMP and an adenylate cyclase activator, forskolin. These results as a whole indicate that PGE2 inhibited the actions of AGE-2 and AGE-3 via EP2/EP4 receptors and the cAMP/PKA pathway.
AB - Posttransplant diabetes mellitus is a frequent complication among transplant recipients. Ligation of advanced glycation end products (AGEs) with their receptor on monocytes/macrophages plays a role in diabetes complications. The enhancement of adhesion molecule expression on monocytes/macrophages activates T cells, reducing allograft survival. In previous work, we found that toxic AGEs, AGE-2 and AGE-3, induced the expression of intracellular adhesion molecule-1, B7.1, B7.2, and CD40 on monocytes, production of interferon-γ and tumor necrosis factor α, and lymphocyte proliferation during human mixed lymphocyte reaction. AGE-induced up-regulation of adhesion molecule expression was involved in cytokine production and lymphocyte proliferation. Prostaglandin E2 (PGE2) concentration-dependently inhibited the actions of AGE-2 and AGE-3. The effects of PGE2 were mimicked by an EP2 receptor agonist, ONO-AE1-259-01 (11,15-O-dimethyl PGE2), and an EP4 receptor agonist, ONO-AE1-329 [16-(3-methoxymethyl)phenyl-omega-tetranor-3,7dithia PGE1]. An EP2 receptor antagonist, AH6809 (6-isopropoxy-9-oxaxanthene-2-carboxylic acid), and an EP4 receptor antagonist, AH23848 [(4Z)-7-[(rel-1S,2S,5R)-5-((1,1′-biphenyl-4- yl)methoxy)-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid], inhibited the actions of PGE2. The stimulation of EP2 and EP4 receptors is reported to increase cAMP levels. The effects of PGE2 were reversed by protein kinase A (PKA) inhibitors and mimicked by dibutyryl cAMP and an adenylate cyclase activator, forskolin. These results as a whole indicate that PGE2 inhibited the actions of AGE-2 and AGE-3 via EP2/EP4 receptors and the cAMP/PKA pathway.
UR - http://www.scopus.com/inward/record.url?scp=77956260003&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956260003&partnerID=8YFLogxK
U2 - 10.1124/jpet.110.169102
DO - 10.1124/jpet.110.169102
M3 - Article
C2 - 20558773
AN - SCOPUS:77956260003
VL - 334
SP - 964
EP - 972
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
SN - 0022-3565
IS - 3
ER -