Abstract
Hyper redundant snake robots have a possibility of utilizing in many fields, although there are control complexity problems when it is applied to complicated environment. For example, helical rolling motion have been used to climb a pipe. By using the helical rolling motion, a snake robot can move along the inside or the outside of a pipe. However, this motion has limitation when it moves in a pipe with a high gap or a branch point. In this study, we propose a motion of a snake robot, which wraps around the outside of a pipe, to overcome a branch point on a pipe. The new motion uses a hyperbolic function to make a helical wave curve. The helical wave curve is propagated by changing the parameter of hyperbolic function. Then, the joint angles of a snake robot is derived by calculating curvature and torsion of the curve based on the formula of continuous curve model. Finally, the result of simulational experiment on ROS and Gazebo are shown to validate the effectiveness of the new motion.
Original language | English |
---|---|
Title of host publication | SII 2016 - 2016 IEEE/SICE International Symposium on System Integration |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 821-826 |
Number of pages | 6 |
ISBN (Electronic) | 9781509033294 |
DOIs | |
Publication status | Published - Feb 6 2017 |
Event | 2016 IEEE/SICE International Symposium on System Integration, SII 2016 - Sapporo, Japan Duration: Dec 13 2016 → Dec 15 2016 |
Other
Other | 2016 IEEE/SICE International Symposium on System Integration, SII 2016 |
---|---|
Country/Territory | Japan |
City | Sapporo |
Period | 12/13/16 → 12/15/16 |
ASJC Scopus subject areas
- Biomedical Engineering
- Control and Systems Engineering
- Mechanical Engineering
- Artificial Intelligence
- Hardware and Architecture
- Control and Optimization