Programmable optically reconfigurable gate array architecture and Its writer

Shinya Kubota, Minoru Watanabe

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Recently, optically reconfigurable gate arrays (ORGAs), which consist of a gate array VLSI, a holographic memory, and a laser array, have been developed to achieve huge virtual gate counts that vastly surpass those of currently available VLSIs. By exploiting the large storage capacity of a holographic memory, VLSIs with more than 1 teragate counts will be producible. However, compared with current field programmable gate arrays, conventional ORGAs have one important shortcoming: they cannot be reprogrammed after fabrication. To reprogram ORGAs, a holographic memory must be disassembled from its ORGA package, then reprogrammed outside of the ORGA package using a holographic memory writer. It must then be implemented onto the ORGA package with high precision techniques beyond that which can be provided by manual assembly. Therefore, to improve this shortcoming, this paper proposes what is believed to be the world's first programmable ORGA architecture with no disassembly. Finally, the availability of this architecture is discussed based on the experimental results.

Original languageEnglish
Pages (from-to)302-308
Number of pages7
JournalApplied Optics
Volume48
Issue number2
DOIs
Publication statusPublished - Jan 10 2009
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Programmable optically reconfigurable gate array architecture and Its writer'. Together they form a unique fingerprint.

Cite this