Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis

Naeem Rashid, Hiroyuki Imanaka, Toshiaki Fukui, Haruyuki Atomi, Tadayuki Imanaka

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Numerous bacteria and mammalian cells harbor two enzymes, phosphopentomutase (PPM) and 2-deoxyribose 5-phosphate aldolase (DERA), involved in the interconversion between nucleosides and central carbon metabolism. In this study, we have examined the presence of this metabolic link in the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. A search of the genome sequence of this strain revealed the presence of a closely related orthologue (TK2104) of bacterial DERA genes while no orthologue related to previously characterized PPM genes could be detected. Expression, purification, and characterization of the TK2104 protein product revealed that this gene actually encoded a DERA, catalyzing the reaction through a class I aldolase mechanism. As PPM activity was detected in T. kodakaraensis cells, we partially purified the protein to examine its N-terminal amino acid sequence. The sequence corresponded to a gene (TK1777) similar to phosphomannomutases within COG1109 but not COG1015, which includes all previously identified PPMs. Heterologous gene expression of TK1777 and characterization of the purified recombinant protein clearly revealed that the gene indeed encoded a PPM. Both enzyme activities could be observed in T. kodakaraensis cells under glycolytic and gluconeogenic growth conditions, whereas the addition of ribose, 2-deoxyribose, and 2′-deoxynucleosides in the medium did not lead to a significant induction of these activities. Our results clearly indicate the presence of a metabolic link between pentoses and central carbon metabolism in T. kodakaraensis, providing an alternative route for pentose biosynthesis through the functions of DERA and a structurally novel PPM.

Original languageEnglish
Pages (from-to)4185-4191
Number of pages7
JournalJournal of bacteriology
Volume186
Issue number13
DOIs
Publication statusPublished - Jul 2004
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis'. Together they form a unique fingerprint.

  • Cite this