Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative

Akio Hayashi, Muh Nur Khoiru Wihadi, Hiromi Ota, Xavier López, Katsuya Ichihashi, Sadafumi Nishihara, Katsuya Inoue, Nao Tsunoji, Tsuneji Sano, Masahiro Sadakane

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

A mono-potassium cation-encapsulated Preyssler-type phosphotungstate, [P5W30O110K]14- (1), was prepared as a potassium salt, K14[P5W30O110K] (1a), by heating mono-bismuth- or mono-calcium-encapsulated Preyssler-type phosphotungstates (K12[P5W30O110Bi(H2O)] or K13[P5W30O110Ca(H2O)]) in acetate buffer. Characterization of the potassium salt 1a by single-crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectroscopy, and elemental analysis revealed that one potassium cation is encapsulated in the central cavity of the Preyssler-type phosphotungstate molecule with a formal D5h symmetry. Density functional theory calculations have confirmed that the potassium cation prefers the central position of the cavity over a side position, in which no water molecules are coordinated to the encapsulated potassium cation. 31P NMR and cyclic voltammetry analyses revealed the rapid protonation-deprotonation of the oxygens in the cavity compared to that of other Preyssler-type compounds. Heating of 1a in the solid state afforded a di-K+-encapsulated compound, K13[P5W30O110K2] (2a), indicating that a potassium counter-cation is introduced in one of the side cavities, concomitantly displacing the internal potassium ion from the center to a second side cavity, thus providing a new method to encapsulate an additional cation in Preyssler compounds.

Original languageEnglish
Pages (from-to)2363-2373
Number of pages11
JournalACS Omega
Volume3
Issue number2
DOIs
Publication statusPublished - Jan 1 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative'. Together they form a unique fingerprint.

  • Cite this

    Hayashi, A., Wihadi, M. N. K., Ota, H., López, X., Ichihashi, K., Nishihara, S., Inoue, K., Tsunoji, N., Sano, T., & Sadakane, M. (2018). Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative. ACS Omega, 3(2), 2363-2373. https://doi.org/10.1021/acsomega.8b00163