TY - JOUR
T1 - Preparation of phthalocyanines with eight benzylchalcogeno substituents from 5,6-dibromo-4,7-diethylbenzo[1,2,3]trichalcogenoles
AU - Kimura, Takeshi
AU - Yomogita, Akinori
AU - Matsutani, Tomoya
AU - Suzuki, Takahiro
AU - Tanaka, Ichiro
AU - Kawai, Yasushi
AU - Takaguchi, Yutaka
AU - Wakahara, Takatsugu
AU - Akasaka, Takeshi
PY - 2004/7/9
Y1 - 2004/7/9
N2 - Benzo[1,2,3]trichalcogenoles with two bromine atoms on the benzene ring, 5,6-dibromo-4,7-diethylbenzo[1,2,3]trichalcogenoles (1a) and (1b) (chalcogen: 1a = S; 1b = Se), were first prepared by treating 2,3,5,6-tetrabromo-1,4- diethylbenzene (TBDEB) with elemental sulfur or amorphous selenium in DBU at 140 °C (for 1a) and 100 °C (for 1b) for 24 h. The structures of 1a and 1b were verified by NMR spectroscopy, mass spectrometry, and elemental analysis. X-ray crystallographic analysis ultimately showed that the substitution reactions of TBDEB proceeded at the two adjacent bromine atoms. To apply 1a and 1b to construction of phthalocyanine derivatives with sulfur or selenium functional groups, 4,5-bis(benzylchalcogeno)-3,6-diethylphthalonitriles (5a) and (5b) as key intermediates were prepared by way of introduction of alkyl groups (2-cyanoethyl or 4-nitrophenethyl groups) on two chalcogen atoms, substitution of two bromine atoms with nitrile groups, and subsequent exchange of alkyl groups with benzyl groups. Compound 5a was treated with lithium in n-pentanol at 100 °C for 1 h to produce 2,3,9,10,16,17,23,24-octakis(benzylthio)-1,4,8, 11,15,18,22,25-octaethylphthalocyanine (6a). A similar treatment of 5b in n-hexanol at 100 °C for 2 h gave phthalocyanine 6b. The structures of 6a and 6b were determined by 1H NMR spectroscopy and MALDI-TOFMS. X-ray crystallographic analysis of 6a was also performed. The Q-band absorptions (λmax) for 6a and 6b in UV-vis spectra were observed at 755 nm (log ε = 5.1) and 757 nm (log ε = 5.1), respectively, and their electrochemical properties were verified by cyclic voltammetry in dichloromethane with Ag/AgNO3 as a reference electrode. Compounds 6a and 6b were further treated with lithium in THF/NH3 at -78 °C and then with dibutyltin dichloride to produce phthalocyanine derivatives 8a and 8b with four dichalcogenastannole rings by way of octachalcogenate phthalocyanines 7a and 7b.
AB - Benzo[1,2,3]trichalcogenoles with two bromine atoms on the benzene ring, 5,6-dibromo-4,7-diethylbenzo[1,2,3]trichalcogenoles (1a) and (1b) (chalcogen: 1a = S; 1b = Se), were first prepared by treating 2,3,5,6-tetrabromo-1,4- diethylbenzene (TBDEB) with elemental sulfur or amorphous selenium in DBU at 140 °C (for 1a) and 100 °C (for 1b) for 24 h. The structures of 1a and 1b were verified by NMR spectroscopy, mass spectrometry, and elemental analysis. X-ray crystallographic analysis ultimately showed that the substitution reactions of TBDEB proceeded at the two adjacent bromine atoms. To apply 1a and 1b to construction of phthalocyanine derivatives with sulfur or selenium functional groups, 4,5-bis(benzylchalcogeno)-3,6-diethylphthalonitriles (5a) and (5b) as key intermediates were prepared by way of introduction of alkyl groups (2-cyanoethyl or 4-nitrophenethyl groups) on two chalcogen atoms, substitution of two bromine atoms with nitrile groups, and subsequent exchange of alkyl groups with benzyl groups. Compound 5a was treated with lithium in n-pentanol at 100 °C for 1 h to produce 2,3,9,10,16,17,23,24-octakis(benzylthio)-1,4,8, 11,15,18,22,25-octaethylphthalocyanine (6a). A similar treatment of 5b in n-hexanol at 100 °C for 2 h gave phthalocyanine 6b. The structures of 6a and 6b were determined by 1H NMR spectroscopy and MALDI-TOFMS. X-ray crystallographic analysis of 6a was also performed. The Q-band absorptions (λmax) for 6a and 6b in UV-vis spectra were observed at 755 nm (log ε = 5.1) and 757 nm (log ε = 5.1), respectively, and their electrochemical properties were verified by cyclic voltammetry in dichloromethane with Ag/AgNO3 as a reference electrode. Compounds 6a and 6b were further treated with lithium in THF/NH3 at -78 °C and then with dibutyltin dichloride to produce phthalocyanine derivatives 8a and 8b with four dichalcogenastannole rings by way of octachalcogenate phthalocyanines 7a and 7b.
UR - http://www.scopus.com/inward/record.url?scp=3042704351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042704351&partnerID=8YFLogxK
U2 - 10.1021/jo030354j
DO - 10.1021/jo030354j
M3 - Article
C2 - 15230594
AN - SCOPUS:3042704351
SN - 0022-3263
VL - 69
SP - 4716
EP - 4723
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 14
ER -