Potent cardiovascular actions of homologous adrenomedullins in eels

Shigenori Nobata, Maho Ogoshi, Yoshio Takei

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Adrenomedullin (AM), known as a multifunctional hormone in mammals, forms a unique family of five paralogous peptides in teleost fish. To examine their cardiovascular effects using homologous AMs in eels, we isolated cDNAs encoding four eel AMs, and named AM1 (ortholog of mammalian AM), AM2, AM3 (paralog of AM2 generated only in teleost lineage), and AM5 according to the known teleost AM sequences. Unlike pufferfish, not only AM1 but AM2/3 and AM5 were expressed ubiquitously in various eel tissues. Synthetic mature AM1, AM2, and AM5 exhibited vasodepressor effects after intra-arterial injections, and the effects were more potent at dorsal aorta than at ventral aorta. This indicates that AMs preferentially act on peripheral resistance vessels rather than on branchial arterioles. The potency was in the order of AM2 = AM5 ≫ AM1 in both freshwater (FW) and seawater (SW) eels, which is different from the result of mammals in which AM1 is as potent as, or more potent than, AM2 when injected peripherally. The minimum effective dose of AM2 and AM5 in eels was 1/10 that of AM1 in mammals. The hypotension reached 50% at 1.0 nmol/kg of AM2 and AM5, which is much greater than atrial natriuretic peptide (20%), another potent vasodepressor hormone. Even with such hypotension, AMs did not change heart rate in eels. In addition, AM1 increased blood pressure at ventral aorta and dorsal aorta immediately after an initial hypotension at 5.0 nmol/kg, but not with AM2 and AM5. These data strongly suggest that specific receptors for AM2 and AM5 exist in eels, which differ from the AM1 receptors identified in mammals.

Original languageEnglish
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume294
Issue number5
DOIs
Publication statusPublished - May 2008
Externally publishedYes

Fingerprint

Adrenomedullin
Eels
Aorta
Mammals
Hypotension
Tetraodontiformes
Hormones
Intra-Arterial Injections
AM5
Seawater
Arterioles
Atrial Natriuretic Factor
Fresh Water
Vascular Resistance
Fishes
Complementary DNA
Heart Rate
Blood Pressure
Peptides

Keywords

  • Calcitonin gene-related peptide
  • Dorsal aorta
  • Teleost
  • Vasodepressor action
  • Ventral aorta

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

Potent cardiovascular actions of homologous adrenomedullins in eels. / Nobata, Shigenori; Ogoshi, Maho; Takei, Yoshio.

In: American Journal of Physiology - Regulatory Integrative and Comparative Physiology, Vol. 294, No. 5, 05.2008.

Research output: Contribution to journalArticle

@article{302e86be6318473991fe08bd30cdb1f3,
title = "Potent cardiovascular actions of homologous adrenomedullins in eels",
abstract = "Adrenomedullin (AM), known as a multifunctional hormone in mammals, forms a unique family of five paralogous peptides in teleost fish. To examine their cardiovascular effects using homologous AMs in eels, we isolated cDNAs encoding four eel AMs, and named AM1 (ortholog of mammalian AM), AM2, AM3 (paralog of AM2 generated only in teleost lineage), and AM5 according to the known teleost AM sequences. Unlike pufferfish, not only AM1 but AM2/3 and AM5 were expressed ubiquitously in various eel tissues. Synthetic mature AM1, AM2, and AM5 exhibited vasodepressor effects after intra-arterial injections, and the effects were more potent at dorsal aorta than at ventral aorta. This indicates that AMs preferentially act on peripheral resistance vessels rather than on branchial arterioles. The potency was in the order of AM2 = AM5 ≫ AM1 in both freshwater (FW) and seawater (SW) eels, which is different from the result of mammals in which AM1 is as potent as, or more potent than, AM2 when injected peripherally. The minimum effective dose of AM2 and AM5 in eels was 1/10 that of AM1 in mammals. The hypotension reached 50{\%} at 1.0 nmol/kg of AM2 and AM5, which is much greater than atrial natriuretic peptide (20{\%}), another potent vasodepressor hormone. Even with such hypotension, AMs did not change heart rate in eels. In addition, AM1 increased blood pressure at ventral aorta and dorsal aorta immediately after an initial hypotension at 5.0 nmol/kg, but not with AM2 and AM5. These data strongly suggest that specific receptors for AM2 and AM5 exist in eels, which differ from the AM1 receptors identified in mammals.",
keywords = "Calcitonin gene-related peptide, Dorsal aorta, Teleost, Vasodepressor action, Ventral aorta",
author = "Shigenori Nobata and Maho Ogoshi and Yoshio Takei",
year = "2008",
month = "5",
doi = "10.1152/ajpregu.00707.2007",
language = "English",
volume = "294",
journal = "American Journal of Physiology - Regulatory Integrative and Comparative Physiology",
issn = "0363-6119",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Potent cardiovascular actions of homologous adrenomedullins in eels

AU - Nobata, Shigenori

AU - Ogoshi, Maho

AU - Takei, Yoshio

PY - 2008/5

Y1 - 2008/5

N2 - Adrenomedullin (AM), known as a multifunctional hormone in mammals, forms a unique family of five paralogous peptides in teleost fish. To examine their cardiovascular effects using homologous AMs in eels, we isolated cDNAs encoding four eel AMs, and named AM1 (ortholog of mammalian AM), AM2, AM3 (paralog of AM2 generated only in teleost lineage), and AM5 according to the known teleost AM sequences. Unlike pufferfish, not only AM1 but AM2/3 and AM5 were expressed ubiquitously in various eel tissues. Synthetic mature AM1, AM2, and AM5 exhibited vasodepressor effects after intra-arterial injections, and the effects were more potent at dorsal aorta than at ventral aorta. This indicates that AMs preferentially act on peripheral resistance vessels rather than on branchial arterioles. The potency was in the order of AM2 = AM5 ≫ AM1 in both freshwater (FW) and seawater (SW) eels, which is different from the result of mammals in which AM1 is as potent as, or more potent than, AM2 when injected peripherally. The minimum effective dose of AM2 and AM5 in eels was 1/10 that of AM1 in mammals. The hypotension reached 50% at 1.0 nmol/kg of AM2 and AM5, which is much greater than atrial natriuretic peptide (20%), another potent vasodepressor hormone. Even with such hypotension, AMs did not change heart rate in eels. In addition, AM1 increased blood pressure at ventral aorta and dorsal aorta immediately after an initial hypotension at 5.0 nmol/kg, but not with AM2 and AM5. These data strongly suggest that specific receptors for AM2 and AM5 exist in eels, which differ from the AM1 receptors identified in mammals.

AB - Adrenomedullin (AM), known as a multifunctional hormone in mammals, forms a unique family of five paralogous peptides in teleost fish. To examine their cardiovascular effects using homologous AMs in eels, we isolated cDNAs encoding four eel AMs, and named AM1 (ortholog of mammalian AM), AM2, AM3 (paralog of AM2 generated only in teleost lineage), and AM5 according to the known teleost AM sequences. Unlike pufferfish, not only AM1 but AM2/3 and AM5 were expressed ubiquitously in various eel tissues. Synthetic mature AM1, AM2, and AM5 exhibited vasodepressor effects after intra-arterial injections, and the effects were more potent at dorsal aorta than at ventral aorta. This indicates that AMs preferentially act on peripheral resistance vessels rather than on branchial arterioles. The potency was in the order of AM2 = AM5 ≫ AM1 in both freshwater (FW) and seawater (SW) eels, which is different from the result of mammals in which AM1 is as potent as, or more potent than, AM2 when injected peripherally. The minimum effective dose of AM2 and AM5 in eels was 1/10 that of AM1 in mammals. The hypotension reached 50% at 1.0 nmol/kg of AM2 and AM5, which is much greater than atrial natriuretic peptide (20%), another potent vasodepressor hormone. Even with such hypotension, AMs did not change heart rate in eels. In addition, AM1 increased blood pressure at ventral aorta and dorsal aorta immediately after an initial hypotension at 5.0 nmol/kg, but not with AM2 and AM5. These data strongly suggest that specific receptors for AM2 and AM5 exist in eels, which differ from the AM1 receptors identified in mammals.

KW - Calcitonin gene-related peptide

KW - Dorsal aorta

KW - Teleost

KW - Vasodepressor action

KW - Ventral aorta

UR - http://www.scopus.com/inward/record.url?scp=45549101676&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45549101676&partnerID=8YFLogxK

U2 - 10.1152/ajpregu.00707.2007

DO - 10.1152/ajpregu.00707.2007

M3 - Article

C2 - 18321956

AN - SCOPUS:45549101676

VL - 294

JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

SN - 0363-6119

IS - 5

ER -