TY - JOUR
T1 - Plasma free amino acid profiling of five types of cancer patients and its application for early detection
AU - Miyagi, Yohei
AU - Higashiyama, Masahiko
AU - Gochi, Akira
AU - Akaike, Makoto
AU - Ishikawa, Takashi
AU - Miura, Takeshi
AU - Saruki, Nobuhiro
AU - Bando, Etsuro
AU - Kimura, Hideki
AU - Imamura, Fumio
AU - Moriyama, Masatoshi
AU - Ikeda, Ichiro
AU - Chiba, Akihiko
AU - Oshita, Fumihiro
AU - Imaizumi, Akira
AU - Yamamoto, Hiroshi
AU - Miyano, Hiroshi
AU - Horimoto, Katsuhisa
AU - Tochikubo, Osamu
AU - Mitsushima, Toru
AU - Yamakado, Minoru
AU - Okamoto, Naoyuki
N1 - Funding Information:
The authors have read the journal's policy and have the following conflicts: Dr. Horimoto, Dr. Tochikubo, Dr. Yamakado, and Dr. Okamoto have been consultants for Ajinomoto, Co., Inc. and receive consultancy fees from Ajinomoto, Co., Inc. Dr. Imaizumi, Dr. Yamamoto, and Dr. Miyano are employees of Ajinomoto, Co., Inc. Dr. Miyagi, Dr. Higashiyama, Dr. Gochi, Dr. Akaike, Dr. Ishikawa, Dr. Miura, Dr. Saruki, Dr. Bando, Dr. Kimura, Dr. Imamura, Dr. Moriyama, Dr. Ikeda, Dr. Chiba, Dr. Oshita, Dr. Tochikubo, Dr. Mitsushima, Dr. Yamakado, and Dr. Okamoto received research grants from Ajinomoto, Co., Inc. Dr. Higashiyama, Dr. Imamura, Dr. Imaizumi, and Dr. Okamoto have applied for patents for plasma amino-acid profiling using multivariate analysis as a diagnostic tool for lung cancer and cancers (WO2008/016111 and WO2009/110517), Dr. Gochi, Dr. Imaizumi, and Dr. Yamamoto have applied for patents for plasma amino-acid profiling using multivariate analysis as a diagnostic tool for gastric cancer (WO2009/099005), Dr. Imaizumi and Dr. Okamoto have applied for patents for plasma amino-acid profiling using multivariate analysis as a diagnostic tool for colorectal cancer (WO2008/075663), Dr. Imaizumi and Dr. Okamoto have applied for patents for plasma amino-acid profiling using multivariate analysis as a diagnostic tool for breast cancer (WO2008/075662), Dr. Miyagi, Dr. Miura, Dr. Imaizumi, Dr. Yamamoto, and Dr. Okamoto have applied for patents for plasma amino-acid profiling using multivariate analysis as a diagnostic tool for prostate cancer (WO2009/154297), and Dr. Miyano has applied for patents for plasma amino acid measurement systems(WO2003/069328 and WO2005/116629). This does not alter the authors’ adherence to all the PLoS One policies on sharing data and materials.
PY - 2011
Y1 - 2011
N2 - Background: Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection methods using blood samples. Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach because PFAAs link all organ systems and have important roles in metabolism. Furthermore, PFAA profiles are known to be influenced by specific diseases, including cancers. Therefore, the purpose of the present study was to determine the characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection. Methods and Findings: Plasma samples were collected from approximately 200 patients from multiple institutes, each diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer. Patients were compared to gender- and age- matched controls also used in this study. The PFAA levels were measured using high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS). Univariate analysis revealed significant differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even those with asymptomatic early-stage disease. Furthermore, multivariate analysis clearly discriminated the cancer patients from the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC >0.75 for each cancer), regardless of cancer stage. Because this study was designed as case-control study, further investigations, including model construction and validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling. Conclusions: These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis. PFAA profiles can also be used to determine various disease diagnoses from a single blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods.
AB - Background: Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection methods using blood samples. Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach because PFAAs link all organ systems and have important roles in metabolism. Furthermore, PFAA profiles are known to be influenced by specific diseases, including cancers. Therefore, the purpose of the present study was to determine the characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection. Methods and Findings: Plasma samples were collected from approximately 200 patients from multiple institutes, each diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer. Patients were compared to gender- and age- matched controls also used in this study. The PFAA levels were measured using high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS). Univariate analysis revealed significant differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even those with asymptomatic early-stage disease. Furthermore, multivariate analysis clearly discriminated the cancer patients from the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC >0.75 for each cancer), regardless of cancer stage. Because this study was designed as case-control study, further investigations, including model construction and validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling. Conclusions: These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis. PFAA profiles can also be used to determine various disease diagnoses from a single blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods.
UR - http://www.scopus.com/inward/record.url?scp=80052526020&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052526020&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0024143
DO - 10.1371/journal.pone.0024143
M3 - Article
C2 - 21915291
AN - SCOPUS:80052526020
SN - 1932-6203
VL - 6
JO - PLoS One
JF - PLoS One
IS - 9
M1 - e24143
ER -