Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse

J. Gaudin, N. Medvedev, J. Chalupský, T. Burian, S. Dastjani-Farahani, V. Hájková, M. Harmand, Harald Olaf Jeschke, L. Juha, M. Jurek, D. Klinger, J. Krzywinski, R. A. Loch, S. Moeller, M. Nagasono, C. Ozkan, K. Saksl, H. Sinn, R. Sobierajski, P. SovákS. Toleikis, K. Tiedtke, M. Toufarová, T. Tschentscher, V. Vorlíček, L. Vyšín, H. Wabnitz, B. Ziaja

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.

Original languageEnglish
Article number060101
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume88
Issue number6
DOIs
Publication statusPublished - Aug 7 2013
Externally publishedYes

Fingerprint

Graphitization
Diamond
graphitization
Free electron lasers
Laser pulses
Diamonds
Photons
diamonds
Ultraviolet lasers
thresholds
Graphite
Electrons
photons
pulses
Ultrashort pulses
Energy gap
Phase transitions
Irradiation
yield point
ultraviolet lasers

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse. / Gaudin, J.; Medvedev, N.; Chalupský, J.; Burian, T.; Dastjani-Farahani, S.; Hájková, V.; Harmand, M.; Jeschke, Harald Olaf; Juha, L.; Jurek, M.; Klinger, D.; Krzywinski, J.; Loch, R. A.; Moeller, S.; Nagasono, M.; Ozkan, C.; Saksl, K.; Sinn, H.; Sobierajski, R.; Sovák, P.; Toleikis, S.; Tiedtke, K.; Toufarová, M.; Tschentscher, T.; Vorlíček, V.; Vyšín, L.; Wabnitz, H.; Ziaja, B.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 88, No. 6, 060101, 07.08.2013.

Research output: Contribution to journalArticle

Gaudin, J, Medvedev, N, Chalupský, J, Burian, T, Dastjani-Farahani, S, Hájková, V, Harmand, M, Jeschke, HO, Juha, L, Jurek, M, Klinger, D, Krzywinski, J, Loch, RA, Moeller, S, Nagasono, M, Ozkan, C, Saksl, K, Sinn, H, Sobierajski, R, Sovák, P, Toleikis, S, Tiedtke, K, Toufarová, M, Tschentscher, T, Vorlíček, V, Vyšín, L, Wabnitz, H & Ziaja, B 2013, 'Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse', Physical Review B - Condensed Matter and Materials Physics, vol. 88, no. 6, 060101. https://doi.org/10.1103/PhysRevB.88.060101
Gaudin, J. ; Medvedev, N. ; Chalupský, J. ; Burian, T. ; Dastjani-Farahani, S. ; Hájková, V. ; Harmand, M. ; Jeschke, Harald Olaf ; Juha, L. ; Jurek, M. ; Klinger, D. ; Krzywinski, J. ; Loch, R. A. ; Moeller, S. ; Nagasono, M. ; Ozkan, C. ; Saksl, K. ; Sinn, H. ; Sobierajski, R. ; Sovák, P. ; Toleikis, S. ; Tiedtke, K. ; Toufarová, M. ; Tschentscher, T. ; Vorlíček, V. ; Vyšín, L. ; Wabnitz, H. ; Ziaja, B. / Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse. In: Physical Review B - Condensed Matter and Materials Physics. 2013 ; Vol. 88, No. 6.
@article{ad7c7761225b45b396aa1d6c31ba30dd,
title = "Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse",
abstract = "We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.",
author = "J. Gaudin and N. Medvedev and J. Chalupsk{\'y} and T. Burian and S. Dastjani-Farahani and V. H{\'a}jkov{\'a} and M. Harmand and Jeschke, {Harald Olaf} and L. Juha and M. Jurek and D. Klinger and J. Krzywinski and Loch, {R. A.} and S. Moeller and M. Nagasono and C. Ozkan and K. Saksl and H. Sinn and R. Sobierajski and P. Sov{\'a}k and S. Toleikis and K. Tiedtke and M. Toufarov{\'a} and T. Tschentscher and V. Vorl{\'i}ček and L. Vyš{\'i}n and H. Wabnitz and B. Ziaja",
year = "2013",
month = "8",
day = "7",
doi = "10.1103/PhysRevB.88.060101",
language = "English",
volume = "88",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "6",

}

TY - JOUR

T1 - Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse

AU - Gaudin, J.

AU - Medvedev, N.

AU - Chalupský, J.

AU - Burian, T.

AU - Dastjani-Farahani, S.

AU - Hájková, V.

AU - Harmand, M.

AU - Jeschke, Harald Olaf

AU - Juha, L.

AU - Jurek, M.

AU - Klinger, D.

AU - Krzywinski, J.

AU - Loch, R. A.

AU - Moeller, S.

AU - Nagasono, M.

AU - Ozkan, C.

AU - Saksl, K.

AU - Sinn, H.

AU - Sobierajski, R.

AU - Sovák, P.

AU - Toleikis, S.

AU - Tiedtke, K.

AU - Toufarová, M.

AU - Tschentscher, T.

AU - Vorlíček, V.

AU - Vyšín, L.

AU - Wabnitz, H.

AU - Ziaja, B.

PY - 2013/8/7

Y1 - 2013/8/7

N2 - We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.

AB - We studied experimentally and theoretically the structural transition of diamond under an irradiation with an intense femtosecond extreme ultraviolet laser (XUV) pulse of 24-275 eV photon energy provided by free-electron lasers. Experimental results obtained show that the irradiated diamond undergoes a solid-to-solid phase transition to graphite, and not to an amorphous state. Our theoretical findings suggest that the nature of this transition is nonthermal, stimulated by a change of the interatomic potential triggered by the excitation of valence electrons. Ultrashort laser pulse duration enables to identify the subsequent steps of this process: electron excitation, band gap collapse, and the following atomic motion. A good agreement between the experimentally measured and theoretically calculated damage thresholds for the XUV range supports our conclusions.

UR - http://www.scopus.com/inward/record.url?scp=84883345619&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883345619&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.88.060101

DO - 10.1103/PhysRevB.88.060101

M3 - Article

AN - SCOPUS:84883345619

VL - 88

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 6

M1 - 060101

ER -