Photoinduced switching to metallic states in the two-dimensional organic Mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks

Hiroyuki Matsuzaki, Masa Aki Ohkura, Yu Ishige, Yoshio Nogami, Hiroshi Okamoto

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A photoinduced phase transition was investigated in an organic charge-transfer (CT) complex M2P-TCNQF4, [M2P: 5,10-dihydro-5,10-dimethylphenazine, donor (D) molecule; TCNQF4: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, acceptor (A) molecule] by means of femtosecond pump-probe reflection spectroscopy. This is an ionic compound and has a peculiar two-dimensional (2D) molecular arrangement; the same A (or D) molecules arrange along the [100] direction, and A and D molecules alternately arrange along the [111] direction. It results in a strongly anisotropic two-dimensional electronic structure. This compound shows a structural and magnetic phase transition at 122 K below which the two neighboring molecules are dimerized along both the [100] and [111] directions. We demonstrate that two kinds of photoinduced phase transitions occur by irradiation of a femtosecond laser pulse; in the high-temperature lattice-uniform phase, a quasi-one-dimensional (1D) metallic state along the AA(DD) stack is generated, and in the low-temperature lattice-dimerized phase, a quasi-2D metallic state is initially produced and molecular dimerizations are subsequently released. Mixed-stack CT compounds consisting of DA stacks are generally insulators or semiconductors in the ground state. Here, such a dynamical metallization in the DA stack is demonstrated. The release of the dimerizations drives several kinds of coherent oscillations which play an important role in the stabilization of the lattice-dimerized phase. The mechanisms of those photoinduced phase transitions are discussed in terms of the magnitudes of the anisotropic bandwidths and molecular dimerizations along two different directions of the molecular stacks.

Original languageEnglish
Article number245140
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume91
Issue number24
DOIs
Publication statusPublished - Jun 18 2015

Fingerprint

insulators
Dimerization
dimerization
Molecules
Phase transitions
molecules
Charge transfer
charge transfer
Metallizing
Ultrashort pulses
Ground state
Electronic structure
Stabilization
stabilization
Irradiation
Pumps
Spectroscopy
pumps
Semiconductor materials
electronic structure

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this

@article{0ecbd6aa1b734905918e7551bbe8e1f3,
title = "Photoinduced switching to metallic states in the two-dimensional organic Mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks",
abstract = "A photoinduced phase transition was investigated in an organic charge-transfer (CT) complex M2P-TCNQF4, [M2P: 5,10-dihydro-5,10-dimethylphenazine, donor (D) molecule; TCNQF4: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, acceptor (A) molecule] by means of femtosecond pump-probe reflection spectroscopy. This is an ionic compound and has a peculiar two-dimensional (2D) molecular arrangement; the same A (or D) molecules arrange along the [100] direction, and A and D molecules alternately arrange along the [111] direction. It results in a strongly anisotropic two-dimensional electronic structure. This compound shows a structural and magnetic phase transition at 122 K below which the two neighboring molecules are dimerized along both the [100] and [111] directions. We demonstrate that two kinds of photoinduced phase transitions occur by irradiation of a femtosecond laser pulse; in the high-temperature lattice-uniform phase, a quasi-one-dimensional (1D) metallic state along the AA(DD) stack is generated, and in the low-temperature lattice-dimerized phase, a quasi-2D metallic state is initially produced and molecular dimerizations are subsequently released. Mixed-stack CT compounds consisting of DA stacks are generally insulators or semiconductors in the ground state. Here, such a dynamical metallization in the DA stack is demonstrated. The release of the dimerizations drives several kinds of coherent oscillations which play an important role in the stabilization of the lattice-dimerized phase. The mechanisms of those photoinduced phase transitions are discussed in terms of the magnitudes of the anisotropic bandwidths and molecular dimerizations along two different directions of the molecular stacks.",
author = "Hiroyuki Matsuzaki and Ohkura, {Masa Aki} and Yu Ishige and Yoshio Nogami and Hiroshi Okamoto",
year = "2015",
month = "6",
day = "18",
doi = "10.1103/PhysRevB.91.245140",
language = "English",
volume = "91",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "24",

}

TY - JOUR

T1 - Photoinduced switching to metallic states in the two-dimensional organic Mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks

AU - Matsuzaki, Hiroyuki

AU - Ohkura, Masa Aki

AU - Ishige, Yu

AU - Nogami, Yoshio

AU - Okamoto, Hiroshi

PY - 2015/6/18

Y1 - 2015/6/18

N2 - A photoinduced phase transition was investigated in an organic charge-transfer (CT) complex M2P-TCNQF4, [M2P: 5,10-dihydro-5,10-dimethylphenazine, donor (D) molecule; TCNQF4: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, acceptor (A) molecule] by means of femtosecond pump-probe reflection spectroscopy. This is an ionic compound and has a peculiar two-dimensional (2D) molecular arrangement; the same A (or D) molecules arrange along the [100] direction, and A and D molecules alternately arrange along the [111] direction. It results in a strongly anisotropic two-dimensional electronic structure. This compound shows a structural and magnetic phase transition at 122 K below which the two neighboring molecules are dimerized along both the [100] and [111] directions. We demonstrate that two kinds of photoinduced phase transitions occur by irradiation of a femtosecond laser pulse; in the high-temperature lattice-uniform phase, a quasi-one-dimensional (1D) metallic state along the AA(DD) stack is generated, and in the low-temperature lattice-dimerized phase, a quasi-2D metallic state is initially produced and molecular dimerizations are subsequently released. Mixed-stack CT compounds consisting of DA stacks are generally insulators or semiconductors in the ground state. Here, such a dynamical metallization in the DA stack is demonstrated. The release of the dimerizations drives several kinds of coherent oscillations which play an important role in the stabilization of the lattice-dimerized phase. The mechanisms of those photoinduced phase transitions are discussed in terms of the magnitudes of the anisotropic bandwidths and molecular dimerizations along two different directions of the molecular stacks.

AB - A photoinduced phase transition was investigated in an organic charge-transfer (CT) complex M2P-TCNQF4, [M2P: 5,10-dihydro-5,10-dimethylphenazine, donor (D) molecule; TCNQF4: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, acceptor (A) molecule] by means of femtosecond pump-probe reflection spectroscopy. This is an ionic compound and has a peculiar two-dimensional (2D) molecular arrangement; the same A (or D) molecules arrange along the [100] direction, and A and D molecules alternately arrange along the [111] direction. It results in a strongly anisotropic two-dimensional electronic structure. This compound shows a structural and magnetic phase transition at 122 K below which the two neighboring molecules are dimerized along both the [100] and [111] directions. We demonstrate that two kinds of photoinduced phase transitions occur by irradiation of a femtosecond laser pulse; in the high-temperature lattice-uniform phase, a quasi-one-dimensional (1D) metallic state along the AA(DD) stack is generated, and in the low-temperature lattice-dimerized phase, a quasi-2D metallic state is initially produced and molecular dimerizations are subsequently released. Mixed-stack CT compounds consisting of DA stacks are generally insulators or semiconductors in the ground state. Here, such a dynamical metallization in the DA stack is demonstrated. The release of the dimerizations drives several kinds of coherent oscillations which play an important role in the stabilization of the lattice-dimerized phase. The mechanisms of those photoinduced phase transitions are discussed in terms of the magnitudes of the anisotropic bandwidths and molecular dimerizations along two different directions of the molecular stacks.

UR - http://www.scopus.com/inward/record.url?scp=84936806782&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84936806782&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.91.245140

DO - 10.1103/PhysRevB.91.245140

M3 - Article

AN - SCOPUS:84936806782

VL - 91

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 24

M1 - 245140

ER -