Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana

Akinori Kiba, Masahito Nakano, Miki Hosokawa, Ivan Galis, Hiroko Nakatani, Tomonori Shinya, Kouhei Ohnishi, Yasufumi Hikichi

Research output: Contribution to journalArticlepeer-review

Abstract

Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.

Original languageEnglish
Pages (from-to)5027-5038
Number of pages12
JournalJournal of experimental botany
Volume71
Issue number16
DOIs
Publication statusPublished - Aug 1 2020

Keywords

  • Jasmonic acid
  • Nicotiana benthamiana
  • Pathogen-associated molecular pattern-triggered immunity
  • Phosphatidylinositol-phospholipase C2
  • Ralstonia solanacearum
  • Virus-induced gene silencing

ASJC Scopus subject areas

  • Physiology
  • Plant Science

Fingerprint Dive into the research topics of 'Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana'. Together they form a unique fingerprint.

Cite this