TY - JOUR
T1 - Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth's lower mantle
AU - Walter, M. J.
AU - Kubo, A.
AU - Yoshino, T.
AU - Brodholt, J.
AU - Koga, K. T.
AU - Ohishi, Y.
N1 - Funding Information:
We thank N. Sata for the excellent assistance at beamline BL10XU, Spring8, and Professor E. Ito for providing MgSiO 3 glass powder. We also thank S. Clark, D. Frost, T. Katsura, M. Kunz, and A. Navrotsky for the discussion, Y. Nakano for the technical assistance, and C. Briel for much-needed stimulus. Reviews by I. Daniel and anonymous helped improve the manuscript. MJW acknowledges support from Lawrence Berkeley and Lawrence Livermore National Laboratories, USA, during preparation of this manuscript. [BW]
PY - 2004/5/30
Y1 - 2004/5/30
N2 - We have investigated the effect of Al3+ on the room-temperature compressibility of perovskite for stoichiometric compositions along the MgSiO3-AlO1.5 join with up to 25 mol% AlO1.5. Aluminous Mg-perovskite was synthesized from glass starting materials, and was observed to remain a stable phase in the range of ∼30-100 GPa at temperatures of ∼2000 to 2600 K. Lattice parameters for orthorhombic ( Pbnm ) perovskite were determined using in situ X-ray diffraction at SPring8, Japan. Addition of Al3+ into the perovskite structure increases orthorhombic distortion and unit cell volume at ambient conditions ( V0). Compression causes anisotropic decreases in axial length, with the a axis more compressive than the b and c axes by about 25% and 3%, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to pressures of at least 100 GPa. Our results show that substitution of Al3+ causes a mild increase in compressibility, with the bulk modulus ( K0) decreasing at a rate of -67±35 GPa/XAl. This decrease in K0 is consistent with recent theoretical calculations if essentially all Al3+ substitutes equally into the six- and eight-fold sites by charge-coupled substitution with Mg2+ and Si4+. In contrast, the large increase in compressibility reported in some studies with addition of even minor amounts of Al is consistent with substitution of Al3+ into six-fold sites via an oxygen-vacancy forming substitution reaction. Schematic phase relations within the ternary MgSiO3-AlO1.5-SiO2 indicate that a stability field of ternary defect Mg-perovskite should be stable at uppermost lower mantle conditions. Extension of phase relations into the quaternary MgSiO3-AlO1.5-FeO1.5-SiO2 based on recent experimental results indicates the existence of a complex polyhedral volume of Mg-perovskite solid solutions comprised of a mixture of charge-coupled and oxygen-vacancy Al3+ and Fe3+ substitutions. Primitive mantle with about 5 mol% AlO1.5 and an Fe3+/(Fe3++Fe2+) ratio of ∼0.5 is expected to be comprised of ferropericlase coexisiting with Mg-perovskite that has a considerable component of Al3+ and Fe3+ defect substitutions at conditions of the uppermost lower mantle. Increased pressure may favor charge-coupled substitution reactions over vacancy forming reactions, such that a region could exist in the lower mantle with a gradient in substitution mechanisms. In this case, we expect the physical and transport properties of Mg-perovskite to change with depth, with a softer, probably more hydrated, defect dominated Mg-perovskite at the top of the lower mantle, grading into a stiffer, dehydrated, charge-coupled substitution dominated Mg-perovskite at greater depth.
AB - We have investigated the effect of Al3+ on the room-temperature compressibility of perovskite for stoichiometric compositions along the MgSiO3-AlO1.5 join with up to 25 mol% AlO1.5. Aluminous Mg-perovskite was synthesized from glass starting materials, and was observed to remain a stable phase in the range of ∼30-100 GPa at temperatures of ∼2000 to 2600 K. Lattice parameters for orthorhombic ( Pbnm ) perovskite were determined using in situ X-ray diffraction at SPring8, Japan. Addition of Al3+ into the perovskite structure increases orthorhombic distortion and unit cell volume at ambient conditions ( V0). Compression causes anisotropic decreases in axial length, with the a axis more compressive than the b and c axes by about 25% and 3%, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to pressures of at least 100 GPa. Our results show that substitution of Al3+ causes a mild increase in compressibility, with the bulk modulus ( K0) decreasing at a rate of -67±35 GPa/XAl. This decrease in K0 is consistent with recent theoretical calculations if essentially all Al3+ substitutes equally into the six- and eight-fold sites by charge-coupled substitution with Mg2+ and Si4+. In contrast, the large increase in compressibility reported in some studies with addition of even minor amounts of Al is consistent with substitution of Al3+ into six-fold sites via an oxygen-vacancy forming substitution reaction. Schematic phase relations within the ternary MgSiO3-AlO1.5-SiO2 indicate that a stability field of ternary defect Mg-perovskite should be stable at uppermost lower mantle conditions. Extension of phase relations into the quaternary MgSiO3-AlO1.5-FeO1.5-SiO2 based on recent experimental results indicates the existence of a complex polyhedral volume of Mg-perovskite solid solutions comprised of a mixture of charge-coupled and oxygen-vacancy Al3+ and Fe3+ substitutions. Primitive mantle with about 5 mol% AlO1.5 and an Fe3+/(Fe3++Fe2+) ratio of ∼0.5 is expected to be comprised of ferropericlase coexisiting with Mg-perovskite that has a considerable component of Al3+ and Fe3+ defect substitutions at conditions of the uppermost lower mantle. Increased pressure may favor charge-coupled substitution reactions over vacancy forming reactions, such that a region could exist in the lower mantle with a gradient in substitution mechanisms. In this case, we expect the physical and transport properties of Mg-perovskite to change with depth, with a softer, probably more hydrated, defect dominated Mg-perovskite at the top of the lower mantle, grading into a stiffer, dehydrated, charge-coupled substitution dominated Mg-perovskite at greater depth.
KW - Defects
KW - Equation-of-state
KW - Lower mantle
KW - Perovskite
KW - Substitution mechanisms
UR - http://www.scopus.com/inward/record.url?scp=2442691899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2442691899&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2004.03.014
DO - 10.1016/j.epsl.2004.03.014
M3 - Article
AN - SCOPUS:2442691899
VL - 222
SP - 501
EP - 516
JO - Earth and Planetary Sciences Letters
JF - Earth and Planetary Sciences Letters
SN - 0012-821X
IS - 2
ER -