Phase behaviors of supercooled water: Reconciling a critical point of amorphous ices with spinodal instability

Research output: Contribution to journalArticle

139 Citations (Scopus)

Abstract

The anomalies of supercooled water in thermodynamic response functions at atmospheric pressure, the phase transition between low and high density amorphous ices (LDA and HDA), and a predicted fragile-strong transition are accounted for in a unified manner by reconciling an idea due to Stanley and co-workers introducing a second critical point separating LDA and HDA ices with a conjecture proposed by Speedy that LDA is a different phase from a normal water, called water II. The reconciliation is made on the basis of results from extensive molecular dynamics simulations at constant pressure and temperature. It is found that there exist large gaps around temperature 213 K in thermodynamic, structural, and dynamic properties at atmospheric pressure, suggesting liquid-liquid phase transition. This transition is identified with an extension of the experimentally observed LDA-HDA transition in high pressure to atmospheric pressure. Thus, we propose a new phase diagram where the locus of the second critical point is moved into negative pressure region. With this simple modification, it becomes possible to account for the divergence of the thermodynamic response functions at atmospheric pressure in terms of the critical point and the spinodal-like instability of HDA. The unstable HDA undergoes a transition to LDA phase in lower temperature. The transition is also observed in high pressure region such as 200 MPa while it disappears at negative pressure, -200 MPa. This reinforces our proposed phase diagram in which there is no continuous path from a supercooled state to LDA at atmospheric pressure. It is argued that the HDA-LDA transition is accompanied by a fragile-strong transition. A possible mechanism of avoiding crystallization of aqueous solutions is also discussed in terms of a difference in hydrogen bond number distribution between LDA and HDA.

Original languageEnglish
Pages (from-to)5099-5111
Number of pages13
JournalThe Journal of Chemical Physics
Volume105
Issue number12
Publication statusPublished - 1996
Externally publishedYes

Fingerprint

Ice
Phase behavior
Atmospheric pressure
critical point
ice
Water
atmospheric pressure
water
Thermodynamics
Phase diagrams
Phase transitions
Liquids
Crystallization
Temperature
Molecular dynamics
Hydrogen bonds
phase diagrams
Bond number
thermodynamics
loci

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

@article{ebd52587368748b6a2e9a16406fd6490,
title = "Phase behaviors of supercooled water: Reconciling a critical point of amorphous ices with spinodal instability",
abstract = "The anomalies of supercooled water in thermodynamic response functions at atmospheric pressure, the phase transition between low and high density amorphous ices (LDA and HDA), and a predicted fragile-strong transition are accounted for in a unified manner by reconciling an idea due to Stanley and co-workers introducing a second critical point separating LDA and HDA ices with a conjecture proposed by Speedy that LDA is a different phase from a normal water, called water II. The reconciliation is made on the basis of results from extensive molecular dynamics simulations at constant pressure and temperature. It is found that there exist large gaps around temperature 213 K in thermodynamic, structural, and dynamic properties at atmospheric pressure, suggesting liquid-liquid phase transition. This transition is identified with an extension of the experimentally observed LDA-HDA transition in high pressure to atmospheric pressure. Thus, we propose a new phase diagram where the locus of the second critical point is moved into negative pressure region. With this simple modification, it becomes possible to account for the divergence of the thermodynamic response functions at atmospheric pressure in terms of the critical point and the spinodal-like instability of HDA. The unstable HDA undergoes a transition to LDA phase in lower temperature. The transition is also observed in high pressure region such as 200 MPa while it disappears at negative pressure, -200 MPa. This reinforces our proposed phase diagram in which there is no continuous path from a supercooled state to LDA at atmospheric pressure. It is argued that the HDA-LDA transition is accompanied by a fragile-strong transition. A possible mechanism of avoiding crystallization of aqueous solutions is also discussed in terms of a difference in hydrogen bond number distribution between LDA and HDA.",
author = "Hideki Tanaka",
year = "1996",
language = "English",
volume = "105",
pages = "5099--5111",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "12",

}

TY - JOUR

T1 - Phase behaviors of supercooled water

T2 - Reconciling a critical point of amorphous ices with spinodal instability

AU - Tanaka, Hideki

PY - 1996

Y1 - 1996

N2 - The anomalies of supercooled water in thermodynamic response functions at atmospheric pressure, the phase transition between low and high density amorphous ices (LDA and HDA), and a predicted fragile-strong transition are accounted for in a unified manner by reconciling an idea due to Stanley and co-workers introducing a second critical point separating LDA and HDA ices with a conjecture proposed by Speedy that LDA is a different phase from a normal water, called water II. The reconciliation is made on the basis of results from extensive molecular dynamics simulations at constant pressure and temperature. It is found that there exist large gaps around temperature 213 K in thermodynamic, structural, and dynamic properties at atmospheric pressure, suggesting liquid-liquid phase transition. This transition is identified with an extension of the experimentally observed LDA-HDA transition in high pressure to atmospheric pressure. Thus, we propose a new phase diagram where the locus of the second critical point is moved into negative pressure region. With this simple modification, it becomes possible to account for the divergence of the thermodynamic response functions at atmospheric pressure in terms of the critical point and the spinodal-like instability of HDA. The unstable HDA undergoes a transition to LDA phase in lower temperature. The transition is also observed in high pressure region such as 200 MPa while it disappears at negative pressure, -200 MPa. This reinforces our proposed phase diagram in which there is no continuous path from a supercooled state to LDA at atmospheric pressure. It is argued that the HDA-LDA transition is accompanied by a fragile-strong transition. A possible mechanism of avoiding crystallization of aqueous solutions is also discussed in terms of a difference in hydrogen bond number distribution between LDA and HDA.

AB - The anomalies of supercooled water in thermodynamic response functions at atmospheric pressure, the phase transition between low and high density amorphous ices (LDA and HDA), and a predicted fragile-strong transition are accounted for in a unified manner by reconciling an idea due to Stanley and co-workers introducing a second critical point separating LDA and HDA ices with a conjecture proposed by Speedy that LDA is a different phase from a normal water, called water II. The reconciliation is made on the basis of results from extensive molecular dynamics simulations at constant pressure and temperature. It is found that there exist large gaps around temperature 213 K in thermodynamic, structural, and dynamic properties at atmospheric pressure, suggesting liquid-liquid phase transition. This transition is identified with an extension of the experimentally observed LDA-HDA transition in high pressure to atmospheric pressure. Thus, we propose a new phase diagram where the locus of the second critical point is moved into negative pressure region. With this simple modification, it becomes possible to account for the divergence of the thermodynamic response functions at atmospheric pressure in terms of the critical point and the spinodal-like instability of HDA. The unstable HDA undergoes a transition to LDA phase in lower temperature. The transition is also observed in high pressure region such as 200 MPa while it disappears at negative pressure, -200 MPa. This reinforces our proposed phase diagram in which there is no continuous path from a supercooled state to LDA at atmospheric pressure. It is argued that the HDA-LDA transition is accompanied by a fragile-strong transition. A possible mechanism of avoiding crystallization of aqueous solutions is also discussed in terms of a difference in hydrogen bond number distribution between LDA and HDA.

UR - http://www.scopus.com/inward/record.url?scp=18144365354&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=18144365354&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:18144365354

VL - 105

SP - 5099

EP - 5111

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 12

ER -