TY - JOUR
T1 - Paper-based diagnostic devices for evaluating the quality of human sperm
AU - Matsuura, Koji
AU - Chen, Kuan Hung
AU - Tsai, Cheng Han
AU - Li, Wenqian
AU - Asano, Yuka
AU - Naruse, Keiji
AU - Cheng, Chao Min
N1 - Funding Information:
Acknowledgments This study was partly supported by a grant-in-aid for Scientific Research for Young Scientists (A), and Challenging Exploratory Research (No. 22680036 and 23650262 to K. M.), Special Coordination Funds for Promoting Sciences and Technology from the Ministry of Education Science, Sports and Culture, Japan, and Okayama Foundation for Science and Technology (to K. M.). The authors would also like to thank the National Science Council of Taiwan for financially supporting this research under Contract Nos. NSC 101-2628-E-007-011-MY3, NSC 102-2221-E-007-031, and the Grant for Interactive Nano/MicroElectroMechanical Components and Systems from National Tsing Hua University, Taiwan (to C.-M. C.). K. M. thanks Mieko Kodama (Okayama University) for her assistance with figure preparation and formatting.
PY - 2014/5
Y1 - 2014/5
N2 - Male infertility, which amounts to half of all infertility cases, is a serious problem worldwide. The percentage of fertility-related patients in sub-Saharan African countries is higher than that for the developed countries. In low-resource countries, examination of sperm characteristics for male infertility cannot be undertaken because of poor clinical access. To evaluate male fertility in assisted reproductive medicine laboratories, the numbers of motile human sperm, the degree of sperm motility, and sperm morphology have been commonly analyzed using a microscope. It is challenging to monitor the health status of human sperm in resource-limited or remote settings for two primary reasons: (1) high capital cost (equipment for currently accepted procedural standard), and (2) complexity of the currently accepted procedural standard used to simultaneously measure human sperm concentration and motility by skillful embryologists. Determining the health status of human sperm in order to evaluate fertilization capacity using various types of low-cost, easy-to-use, and rapid devices (or systems) is a longstanding but interesting biotechnologically relevant issue in various scientific communities such as male reproduction. Furthering such efforts will inherently influence birth rate in both developed and developing nations. We have demonstrated an inexpensive but robust and easy-to-handle device for monitoring the health status of human sperm made by patterning a piece of paper and measuring the activity of a specific enzyme - a simple and elegant solution. After applying semen to the hydrophilic center circle of our patterned paper, a thiazine assay can be used to suggest sperm concentration in semen, and a tetrazolium-based colorimetric assay (MTT assay) data can be used to help estimate the percentage of motile human sperm (sperm motility) in semen based on the character that motile human sperm moved in and on the paper. Using this paper-based device, we can evaluate fertility levels without consulting doctors and use our assay to compare results with World Health Organization (WHO) reference values for sperm concentration (>2×107) and motility (>50 %). The duration and cost of one entire test are 30 min and 0.1 USD, respectively. We believe that this paper-based assay system would be useful for fertility checks based on WHO references, without need of a microscope, at home. Using this assay method, males in developed or developing countries who are reluctant or unable to consult assisted reproductive technologies clinics can self-analyze their sperm characteristics. We further note that our approach adheres to WHO regulations, especially in regard to in vitro diagnostic device performance with an associated diagnostic algorithm to enhance diagnostic accuracy (compared with just one diagnostic output), and we wish to emphasize that our research could significantly advance a broad range of diagnostic developments including paper-based diagnostic devices, in vitro diagnostic devices, and diagnosis of other diseases in various divisions of translational medicine. These results, we believe, will be of interest to a wide scientific audience working in materials science (biomaterials), chemistry (analytical and clinical), lab-on-a-chip technologies (the development of diagnostic tools), reproductive medicine, bioengineering, and translational medicine.
AB - Male infertility, which amounts to half of all infertility cases, is a serious problem worldwide. The percentage of fertility-related patients in sub-Saharan African countries is higher than that for the developed countries. In low-resource countries, examination of sperm characteristics for male infertility cannot be undertaken because of poor clinical access. To evaluate male fertility in assisted reproductive medicine laboratories, the numbers of motile human sperm, the degree of sperm motility, and sperm morphology have been commonly analyzed using a microscope. It is challenging to monitor the health status of human sperm in resource-limited or remote settings for two primary reasons: (1) high capital cost (equipment for currently accepted procedural standard), and (2) complexity of the currently accepted procedural standard used to simultaneously measure human sperm concentration and motility by skillful embryologists. Determining the health status of human sperm in order to evaluate fertilization capacity using various types of low-cost, easy-to-use, and rapid devices (or systems) is a longstanding but interesting biotechnologically relevant issue in various scientific communities such as male reproduction. Furthering such efforts will inherently influence birth rate in both developed and developing nations. We have demonstrated an inexpensive but robust and easy-to-handle device for monitoring the health status of human sperm made by patterning a piece of paper and measuring the activity of a specific enzyme - a simple and elegant solution. After applying semen to the hydrophilic center circle of our patterned paper, a thiazine assay can be used to suggest sperm concentration in semen, and a tetrazolium-based colorimetric assay (MTT assay) data can be used to help estimate the percentage of motile human sperm (sperm motility) in semen based on the character that motile human sperm moved in and on the paper. Using this paper-based device, we can evaluate fertility levels without consulting doctors and use our assay to compare results with World Health Organization (WHO) reference values for sperm concentration (>2×107) and motility (>50 %). The duration and cost of one entire test are 30 min and 0.1 USD, respectively. We believe that this paper-based assay system would be useful for fertility checks based on WHO references, without need of a microscope, at home. Using this assay method, males in developed or developing countries who are reluctant or unable to consult assisted reproductive technologies clinics can self-analyze their sperm characteristics. We further note that our approach adheres to WHO regulations, especially in regard to in vitro diagnostic device performance with an associated diagnostic algorithm to enhance diagnostic accuracy (compared with just one diagnostic output), and we wish to emphasize that our research could significantly advance a broad range of diagnostic developments including paper-based diagnostic devices, in vitro diagnostic devices, and diagnosis of other diseases in various divisions of translational medicine. These results, we believe, will be of interest to a wide scientific audience working in materials science (biomaterials), chemistry (analytical and clinical), lab-on-a-chip technologies (the development of diagnostic tools), reproductive medicine, bioengineering, and translational medicine.
KW - Enzymatically based paper diagnostic devices
KW - Fertility
KW - Human sperm
KW - Sperm motility
UR - http://www.scopus.com/inward/record.url?scp=84899993306&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84899993306&partnerID=8YFLogxK
U2 - 10.1007/s10404-014-1378-y
DO - 10.1007/s10404-014-1378-y
M3 - Article
AN - SCOPUS:84899993306
VL - 16
SP - 857
EP - 867
JO - Microfluidics and Nanofluidics
JF - Microfluidics and Nanofluidics
SN - 1613-4982
IS - 5
ER -