Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism

Kumar Nagarathinam, Yoshiko Nakada-Nakura, Christoph Parthier, Tohru Terada, Narinobu Juge, Frank Jaenecke, Kehong Liu, Yunhon Hotta, Takaaki Miyaji, Hiroshi Omote, So Iwata, Norimichi Nomura, Milton T. Stubbs, Mikio Tanabe

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H+ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.

Original languageEnglish
Article number4005
JournalNature communications
Volume9
Issue number1
DOIs
Publication statusPublished - Dec 1 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism'. Together they form a unique fingerprint.

Cite this