TY - JOUR
T1 - Outer membrane vesicles of porphyromonas gingivalis elicit a mucosal immune response
AU - Nakao, Ryoma
AU - Hasegawa, Hideki
AU - Ochiai, Kuniyasu
AU - Takashiba, Shogo
AU - Ainai, Akira
AU - Ohnishi, Makoto
AU - Watanabe, Haruo
AU - Senpuku, Hidenobu
PY - 2011
Y1 - 2011
N2 - We previously reported that mutation of galE in Porphyromonas gingivalis has pleiotropic effects, including a truncated lipopolysaccharide (LPS) O-antigen and deglycosylation of the outer membrane protein OMP85 homolog. In the present study, further analysis of the galE mutant revealed that it produced little or no outer membrane vesicles (OMVs). Using three mouse antisera raised against whole cells of the P. gingivalis wild type strain, we performed ELISAs to examine the reactivity of these antisera with whole cells of the wild type or the galE mutant. All three antisera had significantly lower reactivity against the galE mutant compared to wild type. OMVs, but not LPS, retained the immunodominant determinant of P. gingivalis, as determined by ELISAs (with wild type LPS or OMVs as antigen) and absorption assays. In addition, we assessed the capacity of OMVs as a vaccine antigen by intranasal immunization to BALB/c mice. Synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [Poly (I:C)], an agonist of Toll-like receptor 3 (TLR3), was used as the mucosal adjuvant. Vaccination with OMV elicited dramatically high levels of P. gingivalis-specific IgA in nasal washes and saliva, as well as serum IgG and IgA. In conclusion, the OMVs of P. gingivalis have an important role in mucosal immunogenicity as well as in antigenicity. We propose that P. gingivalis OMV is an intriguing immunogen for development of a periodontal disease vaccine.
AB - We previously reported that mutation of galE in Porphyromonas gingivalis has pleiotropic effects, including a truncated lipopolysaccharide (LPS) O-antigen and deglycosylation of the outer membrane protein OMP85 homolog. In the present study, further analysis of the galE mutant revealed that it produced little or no outer membrane vesicles (OMVs). Using three mouse antisera raised against whole cells of the P. gingivalis wild type strain, we performed ELISAs to examine the reactivity of these antisera with whole cells of the wild type or the galE mutant. All three antisera had significantly lower reactivity against the galE mutant compared to wild type. OMVs, but not LPS, retained the immunodominant determinant of P. gingivalis, as determined by ELISAs (with wild type LPS or OMVs as antigen) and absorption assays. In addition, we assessed the capacity of OMVs as a vaccine antigen by intranasal immunization to BALB/c mice. Synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [Poly (I:C)], an agonist of Toll-like receptor 3 (TLR3), was used as the mucosal adjuvant. Vaccination with OMV elicited dramatically high levels of P. gingivalis-specific IgA in nasal washes and saliva, as well as serum IgG and IgA. In conclusion, the OMVs of P. gingivalis have an important role in mucosal immunogenicity as well as in antigenicity. We propose that P. gingivalis OMV is an intriguing immunogen for development of a periodontal disease vaccine.
UR - http://www.scopus.com/inward/record.url?scp=80054122559&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054122559&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0026163
DO - 10.1371/journal.pone.0026163
M3 - Article
C2 - 22022548
AN - SCOPUS:80054122559
VL - 6
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 10
M1 - e26163
ER -