Osteopontin is a myosphere-derived secretory molecule that promotes angiogenic progenitor cell proliferation through the phosphoinositide 3-kinase/Akt pathway

Takehiro Ogata, Tomomi Ueyama, Tetsuya Nomura, Satoshi Asada, Masashi Tagawa, Tomoyuki Nakamura, Tomosaburo Takahashi, Hiroaki Matsubara, Hidemasa Oh

Research output: Contribution to journalArticle

14 Citations (Scopus)


We have reported that skeletal myosphere-derived progenitor cells (MDPCs) can differentiate into vascular cells, and that MDPC transplantation into cardiomyopathic hearts improves cardiac function. However, the autocrine/paracrine molecules and underlying mechanisms responsible for MDPC growth have not yet been determined. To explore the molecules enhancing the proliferation of MDPCs, we performed serial analysis of gene expression and signal sequence trap methods using RNA isolated from MDPCs. We identified osteopontin (OPN), a secretory molecule, as one of most abundant molecules expressed in MDPCs. OPN provided a proliferative effect for MDPCs. MDPCs treated with OPN showed Akt activation, and inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway repressed the proliferative effect of OPN. Furthermore, OPN-pretreated MDPCs maintained their differentiation potential into endothelial and vascular smooth muscle cells. These findings indicate an important role of OPN as an autocrine/paracrine molecule in regulating the proliferative growth of muscle-derived angiogenic progenitor cells via the PI3K/Akt pathway.

Original languageEnglish
Pages (from-to)341-347
Number of pages7
JournalBiochemical and Biophysical Research Communications
Issue number2
Publication statusPublished - Jul 27 2007
Externally publishedYes



  • Differentiation
  • Osteopontin
  • Progenitor cells
  • Proliferation
  • Skeletal muscle

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this