On the role of intermolecular vibrational motions for ice polymorphs I

Volumetric properties of crystalline and amorphous ices

Research output: Contribution to journalArticle

Abstract

Intermolecular vibrations and volumetric properties are investigated using the quasiharmonic approximation with the TIP4P/2005, TIP4P/Ice, and SPC/E potential models for most of the known crystalline and amorphous ice forms that have hydrogen-disordering. The ice forms examined here cover low pressure ices (hexagonal and cubic ice I, XVI, and hypothetical dtc ice), medium pressure ices (III, IV, V, VI, XII, hydrogen-disordered variant of ice II), and high pressure ice (VII) as well as the low density and the high density amorphous forms. We focus on the thermal expansivities and the isothermal compressibilities in the low temperature regime over a wide range of pressures calculated via the intermolecular vibrational free energies. Negative thermal expansivity appears only in the low pressure ice forms. The sign of the thermal expansivity is elucidated in terms of the mode Grüneisen parameters of the low frequency intermolecular vibrational motions. Although the band structure for the low frequency region of the vibrational density of state in the medium pressure ice has a close resemblance to that in the low pressure ice, its response against volume variation is opposite. We reveal that the mixing of translational and rotational motions in the low frequency modes plays a crucial role in the appearance of the negative thermal expansivity in the low pressure ice forms. The medium pressure ices can be further divided into two groups in terms of the hydrogen-bond network flexibility, which is manifested in the properties on the molecular rearrangement against volume variation, notably the isothermal compressibility.

Original languageEnglish
Article number114501
JournalJournal of Chemical Physics
Volume151
Issue number11
DOIs
Publication statusPublished - Sep 21 2019

Fingerprint

pressure ice
Ice
Polymorphism
ice
Crystalline materials
low pressure
low frequencies
compressibility
translational motion
Compressibility
hydrogen
Hydrogen
flexibility
free energy
hydrogen bonds
vibration
Vibrational spectra

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

@article{61f5c526a11b4d7da68207fad272ee74,
title = "On the role of intermolecular vibrational motions for ice polymorphs I: Volumetric properties of crystalline and amorphous ices",
abstract = "Intermolecular vibrations and volumetric properties are investigated using the quasiharmonic approximation with the TIP4P/2005, TIP4P/Ice, and SPC/E potential models for most of the known crystalline and amorphous ice forms that have hydrogen-disordering. The ice forms examined here cover low pressure ices (hexagonal and cubic ice I, XVI, and hypothetical dtc ice), medium pressure ices (III, IV, V, VI, XII, hydrogen-disordered variant of ice II), and high pressure ice (VII) as well as the low density and the high density amorphous forms. We focus on the thermal expansivities and the isothermal compressibilities in the low temperature regime over a wide range of pressures calculated via the intermolecular vibrational free energies. Negative thermal expansivity appears only in the low pressure ice forms. The sign of the thermal expansivity is elucidated in terms of the mode Gr{\"u}neisen parameters of the low frequency intermolecular vibrational motions. Although the band structure for the low frequency region of the vibrational density of state in the medium pressure ice has a close resemblance to that in the low pressure ice, its response against volume variation is opposite. We reveal that the mixing of translational and rotational motions in the low frequency modes plays a crucial role in the appearance of the negative thermal expansivity in the low pressure ice forms. The medium pressure ices can be further divided into two groups in terms of the hydrogen-bond network flexibility, which is manifested in the properties on the molecular rearrangement against volume variation, notably the isothermal compressibility.",
author = "Hideki Tanaka and Takuma Yagasaki and Masakazu Matsumoto",
year = "2019",
month = "9",
day = "21",
doi = "10.1063/1.5119748",
language = "English",
volume = "151",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "11",

}

TY - JOUR

T1 - On the role of intermolecular vibrational motions for ice polymorphs I

T2 - Volumetric properties of crystalline and amorphous ices

AU - Tanaka, Hideki

AU - Yagasaki, Takuma

AU - Matsumoto, Masakazu

PY - 2019/9/21

Y1 - 2019/9/21

N2 - Intermolecular vibrations and volumetric properties are investigated using the quasiharmonic approximation with the TIP4P/2005, TIP4P/Ice, and SPC/E potential models for most of the known crystalline and amorphous ice forms that have hydrogen-disordering. The ice forms examined here cover low pressure ices (hexagonal and cubic ice I, XVI, and hypothetical dtc ice), medium pressure ices (III, IV, V, VI, XII, hydrogen-disordered variant of ice II), and high pressure ice (VII) as well as the low density and the high density amorphous forms. We focus on the thermal expansivities and the isothermal compressibilities in the low temperature regime over a wide range of pressures calculated via the intermolecular vibrational free energies. Negative thermal expansivity appears only in the low pressure ice forms. The sign of the thermal expansivity is elucidated in terms of the mode Grüneisen parameters of the low frequency intermolecular vibrational motions. Although the band structure for the low frequency region of the vibrational density of state in the medium pressure ice has a close resemblance to that in the low pressure ice, its response against volume variation is opposite. We reveal that the mixing of translational and rotational motions in the low frequency modes plays a crucial role in the appearance of the negative thermal expansivity in the low pressure ice forms. The medium pressure ices can be further divided into two groups in terms of the hydrogen-bond network flexibility, which is manifested in the properties on the molecular rearrangement against volume variation, notably the isothermal compressibility.

AB - Intermolecular vibrations and volumetric properties are investigated using the quasiharmonic approximation with the TIP4P/2005, TIP4P/Ice, and SPC/E potential models for most of the known crystalline and amorphous ice forms that have hydrogen-disordering. The ice forms examined here cover low pressure ices (hexagonal and cubic ice I, XVI, and hypothetical dtc ice), medium pressure ices (III, IV, V, VI, XII, hydrogen-disordered variant of ice II), and high pressure ice (VII) as well as the low density and the high density amorphous forms. We focus on the thermal expansivities and the isothermal compressibilities in the low temperature regime over a wide range of pressures calculated via the intermolecular vibrational free energies. Negative thermal expansivity appears only in the low pressure ice forms. The sign of the thermal expansivity is elucidated in terms of the mode Grüneisen parameters of the low frequency intermolecular vibrational motions. Although the band structure for the low frequency region of the vibrational density of state in the medium pressure ice has a close resemblance to that in the low pressure ice, its response against volume variation is opposite. We reveal that the mixing of translational and rotational motions in the low frequency modes plays a crucial role in the appearance of the negative thermal expansivity in the low pressure ice forms. The medium pressure ices can be further divided into two groups in terms of the hydrogen-bond network flexibility, which is manifested in the properties on the molecular rearrangement against volume variation, notably the isothermal compressibility.

UR - http://www.scopus.com/inward/record.url?scp=85072533340&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072533340&partnerID=8YFLogxK

U2 - 10.1063/1.5119748

DO - 10.1063/1.5119748

M3 - Article

VL - 151

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 11

M1 - 114501

ER -