On Fooling Facial Recognition Systems using Adversarial Patches

Rushirajsinh Parmar, Minoru Kuribayashi, Hiroto Takiwaki, Mehul S. Raval

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Researchers are increasingly interested to study novel attacks on machine learning models. The classifiers are fooled by making small perturbation to the input or by learning patches that can be applied to objects. In this paper we present an iterative approach to generate a patch that when digitally placed on the face can successfully fool the facial recognition system. We focus on dodging attack where a target face is misidentified as any other face. The proof of concept is show-cased using FGSM and FaceNet face recognition system under the white-box attack. The framework is generic and it can be extended to other noise model and recognition system. It has been evaluated for different - patch size, noise strength, patch location, number of patches and dataset. The experiments shows that the proposed approach can significantly lower the recognition accuracy. Compared to state of the art digital-world attacks, the proposed approach is simpler and can generate inconspicuous natural looking patch with comparable fool rate and smallest patch size.

Original languageEnglish
Title of host publication2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728186719
DOIs
Publication statusPublished - 2022
Event2022 International Joint Conference on Neural Networks, IJCNN 2022 - Padua, Italy
Duration: Jul 18 2022Jul 23 2022

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2022-July

Conference

Conference2022 International Joint Conference on Neural Networks, IJCNN 2022
Country/TerritoryItaly
CityPadua
Period7/18/227/23/22

Keywords

  • Adversarial example
  • convolutional neural network
  • dodging attack
  • face recognition

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'On Fooling Facial Recognition Systems using Adversarial Patches'. Together they form a unique fingerprint.

Cite this