Abstract
Three-dimensional numerical simulations were conducted for the Top-Seeded Solution Growth (TSSG) process of silicon carbide (SiC) crystals. We investigated the influence of coils frequency and peak current, and an applied rotating magnetic field (RMF) on the melt flow developing in this system. Numerical simulation results show that the Marangoni flow in the melt becomes stronger at higher coils frequencies due to the decreasing coils-induced electromagnetic field strength. Results also show that the use of external RMF may improve supersaturation uniformity along the seed if it is properly adjusted with respect to the coils-induced electromagnetic field strength. Furthermore, it is predicted that the application of RMF and seed rotation in the same direction may enhance supersaturation below the seed.
Original language | English |
---|---|
Article number | 111 |
Journal | Crystals |
Volume | 10 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2020 |
Externally published | Yes |
Keywords
- Flow control
- SiC crystal growth
- TSSG method
ASJC Scopus subject areas
- Chemical Engineering(all)
- Materials Science(all)
- Condensed Matter Physics
- Inorganic Chemistry