Numerical investigation of the effects of environmental parameters and geometry on energy absorption for an open-type water-cooled flat-plate solar collector

B. Song, H. Inaba, A. Horibe

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

A two-dimensional mathematical model was developed for predicting the performance of an open-type water-cooled flat-plate solar collector, and solved numerically through an implicit finite difference method. The effects of various environmental and geometric conditions on energy absorption for the collector were investigated. The results predict that there is an optimum length and tilt angle for the absorbing plate for which the collector could obtain the highest solar energy absorptance. The latent heat flux of water evaporation can be 3 to 15 times larger than the sensible heat flux under normal operating conditions. The wind speed and the inlet water temperature have a large influence on the energy absorption of the collector. The effects of the solar incident flux, the atmospheric humidity and temperature, the absorbing plate tilt angle and length, and the water film thickness on the temperature rise of the water film and/or the absorptance of the collector are clarified. The open-type flat-plate collector is suitable to operate at lower inlet water temperatures and in regions where the local latitude is in the range of 20°N– 40°N, and the weather is humid and hot with low winds.

Original languageEnglish
Pages (from-to)56-62
Number of pages7
JournalJournal of Solar Energy Engineering, Transactions of the ASME
Volume122
Issue number2
DOIs
Publication statusPublished - May 2000

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Numerical investigation of the effects of environmental parameters and geometry on energy absorption for an open-type water-cooled flat-plate solar collector'. Together they form a unique fingerprint.

  • Cite this